UNIVERSITATEA DIN BUCUREȘTI

Facultatea de Fizică

Programul de studii universitare de licență	FIZICĂ (în limba engleză) - PHYSICS
Domeniul de studii de licență	FIZICĂ
Durata studiilor	3 ANI/180 credite (ECTS)
Forma de învățământ:	Învățământ cu frecvență (IF)

Fișele disciplinelor din planul de învățământ

Compulsory courses	2
DI.101F.EN Real Analysis	2
DI 102F.EN Algebra, Geometry and Differential Equations	6
DI.103F.EN Classical Mechanics I	9
DI.104F.EN Molecular Physics and Heat I	13
DI.107F.EN Scientific English I	17
DI.108F.EN Physical Education and Sport I	19
DI 109F.EN Equations of Mathematical Physics	22
DI 110F.EN Complex Analysis	26
DI.111F.EN Classical Mechanics II	28
DI.112F.EN Molecular Physics and Heat II	32
DI.113F.EN Electricity and Magnetism	36
DI.114F.EN Processing of Physical Data and Numerical Methods	40
DI.115F.EN Scientific English II	43
DI.116F.EN Physical Education and Sport II	46
DI 201F.EN Optics	49
DI.202F.EN Analytical Mechanics	53
DI.203F.EN Electrodynamics and Theory of Relativity I	56
DI.204F.EN Fundamentals of Atomic Physics	61
DI.206F.EN Scientific English III	65
DI.207F.EN Physical Education and Sport III	67
DI.203F.EN Electrodynamics and Theory of Relativity II	70
DI 209F.EN Quantum mechanics I	74
DI.201F.EN Electronics	78
DI.211F.EN Nuclear Physics	81
DI 212F.EN Thermodynamics and Statistical Physics	85
DI 214F.EN Research Activity	88
DI 301F.EN Quantum mechanics II	90
DI.302F.EN Molecular Physics	94
DI.303F.EN Solid State Physics	98
DI.304F.EN Particle Physics	101
DI.305F.EN Spectroscopy and Lasers	105

DI 312F.EN Research Activity	
DI 313F.EN Undergraduate dissertation writing	110
Elective courses	112
DO.105F.1.EN Computer programming (C/C++)	112
DO.105F.2.EN Physical Chemistry	116
DO.106F.1.EN Ethics and academic integrity	119
DO.106F.2.EN. Authoring and scientific dissemination	122
DO.205F.1.EN Simulation Methods in Physics	125
DO.205F.2.EN Systems theory	128
DO.213F.1.EN Virtual instrumentation and data acquisition	131
DO.213F.2EN. Plasma physics and applications	133
DO.306F.1.EN Methods and techniques of presenting the results in physics	137
DO.306F.2.EN History of physics	140
DO.307F.2.EN Elements of quantum optics	146
DO.308.F.1.EN Detectors Dosimetry and Radiation Protection	149
DO.308.F.2.EN Radiation sources. Natural and induced radioactivity	152
DO.309F.1.EN Introduction to Polymers Physics	156
DO.309F.2.EN Introduction to environmental physics	160
DO.310F.1.EN Semiconductor physics	163
DO 311.2F.EN Advanced in solid state	
DO.311F.1.EN Electronic devices and circuits	169
DO.311F.2 Introduction to Nanotechnologies	171
Optional courses	174
DFC.101F.EN Object oriented programming	174
DFC.102F.EN General Chemistry	177
DFC.201F.EN Parallel computer architecture and programming	182
DFC.202F.EN Methods for data analysis and data mining	
DFC.203F.EN Introduction to radioastronomy	
DFC.204F.EN Physics of deformable media	190
DFC.301F.EN Astrophysics and planetology	193
DFC.302F.EN Experimental methods in astrophysics and planetology	198
DFC.303F.EN Unconventional methods for energy production	202

Compulsory courses

DI.101F.EN Real Analysis

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma, and Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	Real Analysis	
2.2. Teacher		Prof. dr. Claudia Timofte
2.3. Tutorials/Practicals instruct	tor(s)	Prof. dr. Claudia Timofte

2.4. Year of study	т	2.5. Semester	т	2.6. Type of	-	2.7	2.7.	Content ¹⁾	DC
	1		1	evaluation	E	of course unit	Type ²⁾	DI	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

		/								
3.1. Hours per week in	6	distribution:	Lectures	3	Tutorials	3	Practicals	0	Project	0
3.2. Total hours per	0.4	1	T .	40		40	D I I	0	D	0
semester	84	distribution:	Lectures	42	Tutorials	42	Practicals	0	Project	0
3.3 Distribution of estimat	ed tim	e for study			•				•	hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 22						22				
3.3.2. Research in library, study of electronic resources, field research						20				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks 20						20				
3.3.4. Examination 4						4				
3.3.5. Other activities 0					0					
3.4. Total hours of individu	ual stu	ıdy		(52					
3.5. Total hours per semester 150										

4. Prerequisites (if necessary)

3.6. ECTS

4.1. curriculum	High school mathematics courses: Algebra, Mathematical Analysis.
4.2. competencies	

6

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia room (with video projector). Lecture notes. Recommended
	bibliography.
5.2. for practicals/tutorials/projects	Video projector. Computers.

6. Specific competences acquired

Professional	 The identification and the appropriate use of the main physical laws and principles in a given
competencies	context.
	 The use of suitable software packages for data analysis and processing. Solving Physics problems under given conditions using analytical, numerical, and statistical methods.
Transversal	
competencies	The efficient use of the information sources and of the communication and professional
	development resources in Romanian and in a widely used foreign language, as well.
	• Carrying out professional tasks efficiently and responsibly, in compliance with the field- specific legislation, ethics, and deontology, under qualified assistance.

7. Course objectives

7.1. General objective	 Knowledge, understanding, and appropriate use of the fundamental concepts of differential, integral, and vector calculus for real functions of several variables, with applications in Physics.
	• Achieving a deep theoretical understanding of the basic concepts of Real Analysis.
	 Acquiring a solid mathematical basis for understanding and modeling complex processes and phenomena in the field of Physics. Possibility of applying differential and integral calculus knowledge in the study of other disciplines.
	 Acquisition of computational skills.

7.2. Specific objectives	 Knowledge and proper use of notions specific to Real Analysis: convergence, series, limit, continuity, and derivability for real functions of several variables, applications of differential calculus in optimization and approximation theory, differential operators, line integrals, multiple integrals, surface integrals and integral formulas, applications of integral calculus in Physics.
	• Development of intuition and of logical and abstract thinking. Gaining the ability to work in a team. Computing skills development.

8. Contents		
8.1. Lectures [chapters]	Teaching techniques	Observations
Metric spaces. Normed spaces. Spaces with scalar	Systematic exposition. Interactive	2 hours
product. Real Euclidean spaces.	lecture. Critical analysis.	
	Examplification.	
Sequences in R ⁿ . Convergent and fundamental	Systematic exposition. Interactive	3 hours
sequences. Complete spaces. Series in normed spaces.	lecture. Critical analysis.	
Number series. Convergence tests.	Examplification.	
Limits of functions. Continuous functions. Continuous	Systematic exposition. Interactive	3 hours
functions on compact sets. Uniform continuity.	lecture. Critical analysis.	
Connected sets.	Examplification.	
Differentiable functions on R ⁿ . Partial derivatives.	Systematic exposition. Interactive	6 hours
Jacobi matrix. Differential operators: gradient,	lecture. Critical analysis.	
divergence, curl. Applications in physics.	Examplification.	
Higher order differentials. Taylor's formula. Local	Systematic exposition. Interactive	4 hours
extrema. Implicit functions and systems of implicit	lecture. Critical analysis.	
functions.	Examplification.	
Sequences and series of functions. Pointwise and	Systematic exposition. Interactive	6 hours
uniform convergence. Power series. Taylor series.	lecture. Critical analysis.	
Fourier series. Applications.	Examplification.	
Integrable functions. Improper integrals. Parameter-	Systematic exposition. Interactive	3 hours
dependent integrals. Improper integrals depending on	lecture. Critical analysis.	
parameters. Euler's functions.	Examplification.	
Line integrals. Paths. Line integrals of the first kind.	Systematic exposition. Interactive	3 hours
Integration of differential forms of degree one.	lecture. Critical analysis.	
	Examplification.	
Multiple integrals. Change of variables in multiple	Systematic exposition. Interactive	4 hours
integrals. Improper multiple integrals. Applications.	lecture. Critical analysis.	
	Examplification.	
Area of a smooth surface. Surface integrals. Oriented	Systematic exposition. Interactive	4 hours
surfaces. Flux of a field through a surface.	lecture. Critical analysis.	
	Examplification.	
Integral formulas: Green-Riemann, Gauss-Ostrogradski,	Systematic exposition. Interactive	4 hours
Stokes. Mechanical work. Path-independence of line	lecture. Critical analysis.	
integrals. Applications in physics.	Examplification.	
Bibliography:		

• G. Arfken, H. Weber, "Mathematical Methods for Physicists", Elsevier Academic Press, 2005.

• P. Bamberg, S. Sternberg, "A Course in Mathematics for Students of Physics", Cambridge University Press, 1990.

N. Cotfas, L. Cotfas, "Elements of Mathematical Analysis" (in Romanian), Editura Universității din București,
 2010.

- R. Courant, "Differential and Integral Calculus", Wiley, New York, 1992.
- A. Halanay, V. Olariu, S. Turbatu, "Mathematical Analysis" (in Romanian), Editura Didactică și Pedagogică, 1983.
- E. Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley, 2011.

• K. F. Riley, M. P. Hobson, S. J. Bence, "Mathematical Methods for Physics and Engineering", 3rd edition, Cambridge University Press, Cambridge, 2006.

- W. Rudin, "Principles of Mathematical Analysis", McGraw-Hill, New York, 1964.
 - C. Timofte, "Differential Calculus", Editura Universității din București, 2009.
- C. Timofte, "Real Analysis", lecture notes, 2021.

8.2. Tutorials	Teaching and learning techniques	Observations		
The seminar follows the course content. The issues to be discussed are meant to provide the student with a deep understanding of the theoretical concepts presented during the lectures, to develop computing skills and the appropriate use of the basic concepts of real analysis.	Exposition. The exercise. Problematization. Guided work. Team work. Solving individual tasks.	42 hours		
Bibliography:				
 L. Aramă, T. Morozan, "Problems of Differential and Integral Calculus" (in Romanian), Editura Tehnică, Bucureşti, 1978. 				

• F. Ayres Jr., E. Mendelson, "Schaum's Outline of Calculus", fourth edition (Schaum's Outline Series), McGraw-Hill, New York, 1999.

• Gh. Bucur, E. Câmpu, S. Găină, "Problems of Differential and Integral Calculus" (in Romanian), vol. I - III, Editura Tehnică, București, 1978.

- B. Demidovich, "Problems in Mathematical Analysis", Mir Publishers, Moscow, 1977.
- N. Donciu, D. Flondor, "Mathematical Analysis. Problems" (in Romanian), Editura ALL, 1998.
- D. Flondor, O. Stanasila, "Lessons of Mathematical Analysis and Solved Exercises" (in Romanian), Editura
- ALL, 1996.

Gh. Procopiuc, M. Ispas, "Problems of Mathematical Analysis" (in Romanian), Iasi, 2002.

8.3. Practicals	Teaching and learning techniques	Observations
Bibliography:		
8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competences and abilities, which are important for an undergraduate student in the field of modern Physics, corresponding to national and international standards. The contents and the teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or from the European Union. The contents are in line with the requirements of the main employers of the graduates (industry, research, secondary school teaching).

10. Assessment

Activity type	10.1 Assessment criteria	10.2. Assessment	10.3. Weight in
Activity type 10.1. Assessment citteria		Methods	final mark
10.4. Lecture	 Clarity, coherence, and 	Written and oral examination	80%
	conciseness of the exam presentation.	(online or "face-to-face"). For	
		online assessment, the exam	
	 Knowledge and understanding 	questions will be sent	
	of the fundamental concepts of Real	electronically, via e-mail or via	
	Analysis.	Google Meet or Microsoft	
		Teams platforms. The exam will	
	 Correct use of mathematical 	be recorded and, throughout	
	methods and techniques.	whole its duration, the students	
		will have their video cameras	
	 The ability to 	turned on.	
	demonstrate/justify theoretical results		
	and to analyze specific examples.		
10.5.1. Tutorial	The ability to apply specific	Homework assignments.	20%
	results obtained in this course to solve	Individual or team projects.	
	given problems.	Active classroom participation.	

	 The ability to solve practical 						
	problems specific to the course and to						
	correctly interpret, analyze, and present						
	the obtained results.						
10.5.2. Practical							
10.5.3. Project							
10.6. Minimal requirement	ts for passing the exam	•					
1	1 0						
 Adequate knowle 	dge and application of the fundamental no	tions of Real Analysis: convergence	, series, limit,				
continuity, derivability, and	d integrability for real functions of several	variables.					
	0 9						
Requirements for getting n	nark 5 (10 points scale)						
1 0 0							
 Students must atte 	end at least 50% of the lecture hours and a	t least 75% of the tutorial ones.					
 Fulfillment of at l 	east 50% of each of the criteria that deterr	nine the final grade.					
	0						
Requirements for getting n	nark 10 (10 points scale)						
 Correct answer to 	all the subjects indicated for obtaining gr	ade 10					
 Skills, well-argue 	d knowledge						
 Demonstrated abi 	lity to analyze phenomena and processes						
 Personal approach 	h and interpretation.						
Data	Teacher's name and signature	Tutoriale instructor, name and a	anoturo				
Date	reacher's name and signature	Tutorials instructor fiame and s	ignature				
5 11 2021	Prof. dr. Claudia Timofta	Prof. dr. Claudia Timofto					
3.11.2021		FIOI. UI. Ciaudia IIIIOIte					
Date of approval							
11 11 2021	Head	of Department					
11,11,2021	Lect. dr. Roxana Zus						

DI 102F.EN Algebra, Geometry and Differential Equations

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical physics, Mathematics, Optics, Plasma, and Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Algebra, Geo	Algebra, Geometry and Differential Equations					
2.2. Teacher Conf. Dr. Radu Slobodeanu								
2.3. Tutorials instructor(s) Conf. Dr. Radu Slobodeanu								
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DC
	1		1	evaluation	E	Classification	Type ²⁾	DI
						of course unit		

1) fundamental (DF), specialty (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours / week in curriculum	6	distribution:	Lectures	3	Tutorials	3	Practical	-	Project	-
3.2. Total hours / semester	84	distribution:	Lectures	42	Tutorials	42	Practical	-	Project	-
3.3 Distribution of estimated time for study					Hours					

3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			24
3.3.2. Research in library, study of electronic resources, field research			14
3.3.3. Preparation for tutorials/projects/reports/homeworks			24
3.3.4. Examination			4
3.3.5. Other activities			-
3.4. Total hours of individual study	62		
2.5. Total hours par somester 150			

3.5. Total hours per semester	150
3.6. ECTS	6

4. Prerequisites (if necessary)

i recessury)				
4.1. curriculum	High school mathematics			
4.2. competencies	-			

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom with video projector. Access to the library and to internet resources
	(Moodle or Google Classroom)
5.2. for tutorials/projects	Classroom with video projector. Mathematica software.

6. Specific competences acquired

Professional	 Solving physics problems using analytical, numerical and statistical methods communication and analysis of information from Physics, with didactic purpose or for research
competencies	and popularization. cross-disciplinary approach of some topics in the area of Physics.
Transversal Competencies	Efficient use of informational sources and of professional training and dissemination resources in a language of international circulation.

7. Course objectives

7.1. General objective	Understanding the linear algebraic structures appearing in physical models (especially in quantum mechanics) and developing related mathematical
	problem-solving skills (also using software Mathematica).
7.2. Specific objectives	Knowledge, understanding and appropriate use of the specific notions of linear
	algebra, curves and surfaces geometry and of the techniques for solving some
	ordinary differential equations.

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
VECTOR SPACES. Linear independence. Subspaces. The	Lecturing. Demonstrating	6h
span of a set of vectors. Basis and dimension of a vector	(Examples). Classroom discussions.	
space.		
The change of basis matrix. The change of coordinates of a	Idem	6h
vector at the change of basis. Sums and intersections of		
subspaces. Direct sums of subspaces. Complements of a		
subspace. Factor spaces. Lines, planes, hyperplanes.		
MATRICES. Linear maps (linear transformations). The	Idem	6h
image (range) and the kernel of a linear map. Isomorphism		
of vector spaces. The matrix associated to a linear map		
with respect to a pair of bases. Operations with matrices.		
The change of associated matrix at the change of bases.		
The algebra of matrices.		
LINEAR SYSTEMS. Gauss-Jordan elimination for	Idem	3h
finding the rank or the inverse of a matrix. Determinants.		
Solving linear systems.		
EUCLIDEAN SPACES. Inner product. Orthogonality.	Idem	3h
Orthogonal bases, orthonormal bases. The Gram-Schmidt		
orthogonalization method. The orthogonal complement of		
a subspace. Description of quantum system through finite		
dimensional Hilbert spaces.		

COMPLEMENTS OF VECTOR CALCULUS. Cross product. Mixed product. Applications to physics. TENSOR PRODUCT. Linear forms and bilinear forms . The dual space. The bidual space. The dual basis and the canonical isomorphism. Multilinear maps and multilinear forms. Tensors. Operations with tensors. The change of coordinates of a tensor at a change of basis.	Idem	6h
MATRIX STRUCTURE. Eigenvalues and eigenvectors. The characteristic polynomial. Invariant subspaces. The structure of linear operators. Diagonalisation. The adjoint of a linear operator. Self-adjoint operators. Orthogonal and unitary operators.	Idem	3h
QUADRATIC FORMS. The Law of Inertia. The reduced (diagonal) form of a quadratic form.	Idem	3h
APPLICATIONS IN GEOMETRY. Affine spaces and transformations. Affine subspaces. Affine frames. Conics and quadrics. The reduced canonical equation. The classification of conics and quadrics.	Idem	3h
DIFFERENTIAL EQUATIONS. Ordinary differential equations: of first order, of higher order, linear, with constant coefficients. Variation of constants method.	Idem	3h
 V. Barbu, <i>Ecuațu diferențiale</i>, Ed. Junimea, 1985. N. Cotfas, <i>Elemente de algebră liniară</i>, Ed. Univ. Bucureșt A. Givental, <i>Linear Algebra and Differential Equations</i>, Ber A. I. Kostrikin, Yu. I. Manin, <i>Linear Algebra and Geometry</i> S. Lang, <i>Linear Algebra</i>, Springer, 2007. E. B. Vinberg, <i>A Course in Algebra</i>, Graduate studies in Manufacture 	i, 2009. ckeley Mathematics Lecture Notes, vol. , Gordon and Breach Science Publisher thematics, vol. 56, AMS, 2003.	11, AMS, 2001. rs, 1989.
8.2. Tutorials	Teaching and learning techniques	Observations
The seminar follows the course content. The issues to be discussed are meant to provide the student with a deep understanding of the theoretical concepts presented during the course, to develop computing skills and the appropriate use of the basic concepts of linear algebra, geometry and ordinary differential equations presented in lectures.	Exercises and problem solving. Guided work	42h
Bibliography:		
G. Arfken, H. Weber, F.E. Harris, <i>Mathematical Methods fo</i> D. Blideanu, I. Popescu, D. Ştefănescu, <i>Probleme de algebr</i> S. Lipschutz, Lipson, M. <i>Linear algebra</i> , Schaum's outline, P.J. Olver, C. Shakiban, <i>Applied Linear Algebra</i> , 2 nd edition D. Ştefănescu, <i>Modele matematice in fizică</i> , Ed. Univ. Bucu	<i>r Physicists</i> , 7th edition, Elsevier 2011 <i>ă liniară</i> , Ed. Univ. București, 1986. McGraw-Hill Education, 2018. , Springer 2018. rești 1984.	
8.3 Practicals	Teaching and learning techniques	Observations
-		-
Bibliography: -	1	
8.4. Project	Teaching and learning techniques	Observations
-	-	-
Bibliography: -		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competences and abilities which are important for an undergraduate student in the field of modern Physics, corresponding to international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are directly useful in the future professional activity of the graduates (industry, research, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 - coherence and clarity of exposition - ability to apply theoretical results and the standard techniques related to (Euclidean) vector (sub)spaces, linear operators (eigenvalues, eigenvectors), quadratic forms and linear constant coefficients differential equations - ability to analyse specific examples 	written exam (alternatively: two partial evaluations)	80%
10.5.1. Tutorial	Correct identification and application of the method needed for problem solving	Homeworks	20%
10.5.2. Practical	-	-	-
10.5.3. Project	-	-	-

10.6. Minimal requirements for passing the exam

At least 50% of points at the exam and 50% of due homeworks.

Being present at minimum 50% of the tutorials

Requirements for getting mark 5 (10 points scale)

• Students must attend at least 50% of the lecture hours and at least 75% of the tutorial ones.

• Fulfillment of at least 50% of each of the criteria that determine the final grade.

Requirements for getting mark 10 (10 points scale)

- Correct answer to all the subjects indicated for obtaining grade 10
- Skills, well-argued knowledge
- Demonstrated ability to analyze phenomena and processes
- Personal approach and interpretation.

Date 5.11.2021

Teacher's name and signature Radu Slobodeanu

Practicals/Tutorials instructor(s) name(s) and signature(s)

Date of approval 11.11.2021

Head of Department Lect.dr. Roxana ZUS

DI.103F.EN Classical Mechanics I

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Structure of the Matter, Earth and Atmospheric Physics,
	Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	Classical Mech	hanics I					
2.2. Teacher			Associate Profes	sor Că	tălin Berlic		
			Associate Profes	sor Ch	neche Tiberius Ov	idius	
2.3. Tutorials/Practicals instructor(s)			Associate Profes	sor Că	tălin Berlic		
			Associate Profes	sor Ch	neche Tiberius Ov	idius	
2.4. Year of studyI2	.5. Semester	1	2.6. Type of	Е	2.7.	Content ¹⁾	DF

evaluation	Classification of course unit	Type ²⁾	DI
------------	----------------------------------	--------------------	----

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	-	Practicals	2	Project	-
3.2. Total hours per semester	56	distribution:	Lectures	28	Tutorials	-	Practicals	28	Project	-
3.3 Distribution of estimat	ed tin	ne for study					-			hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 20					20					
3.3.2. Research in library, study of electronic resources, field research 6				6						
3.3.3. Preparation for practical/tutorials/projects/reports/homework 14				14						
3.3.4. Examination			4							
3.3.5. Other activities -				-						
3.4. Total hours of individual study 40										
3.5. Total hours per semester 100										

3.6. ECTS

4. Prerequisites (if necessary)

4.1. curriculum	Is not the case
4.2. competencies	Good level of understanding of algebraic calculus, elements of geometry, trigonometry and
	mathematical analysis. General physics knowledge.

4

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia room (computer, video projector and projection screen)
5.2. for practicals/tutorials/projects	Laboratory with the necessary equipment for carrying out practical works.
	Computers, Video projector, software packages for data analysis and processing.

6. Specific competences acquired

0. opecnic compete	
Professional	Identification and proper use of the main laws, notions and principles specific to mechanics.
competencies	Solving classical mechanics exercises under imposed conditions.
	Carrying out mechanical experiments using standard laboratory equipment and evaluating the results
	based on theoretical models.
	Creative application of the knowledge acquired in order to understand and model the processes
	specific to classical mechanics.
	Communication and analysis of scientific information in the field of physics.
	Use of specific software packages for data analysis and processing.
Transversal	Efficient use of information sources and communication and training resources.
competencies	Carrying out professional tasks efficiently and responsibly in compliance with the legislation, ethics
	and deontology specific to the field, under qualified assistance.
	Applying efficient teamwork techniques on various hierarchical levels.

7. Course objectives

7.1. General objective	Assimilation of concepts and laws specific to classical mechanics, development of students' ability to perform and interpret experimental works and problem solving specific to classical mechanics.
7.2. Specific objectives	 Analysis and modeling of mechanical movement; Applied study from simple to complex following the specific conservation laws; Applying the theoretical concepts in solving the problems of classical mechanics, as well as formulating rigorous and reasoned theoretical conclusions; Designing and conducting experiments to verify the laws of classical mechanics; Apply the accumulated notions in relation to the specific knowledge of other chapters of physics

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
1. Introduction. The place of mechanics between the classical	Systematic exposition - lecture,	
branches of physics. Fundamental concepts: space, time, mass.	demonstration, discussion, case	1 hour
Measures and units. Dimensional analysis.	study. Examples	
2. Scalar quantities and vector quantities. Addition and		
subtraction of vectors. Scalar, vector, mixed product. Versors.	Systematic exposition - lecture,	
3. Coordinate systems in plane and space. Cartesian coordinates.	demonstration, discussion, case	1 hour
Versors of coordinate axes. Polar coordinates. Spherical	study. Examples	
coordinates. Cylindrical coordinates.		
5. Types of mass point movements. Curvilinear movement.	Sustanatic superition lecture	
Motion with constant acceleration vector. Uniform rectilinear	demonstration discussion case	2 hours
motion. Uniformly varied rectilinear motion. Oblique throwing in	atudu Evemples	2 110015
vacuum. Circular motion. Helical motion.	study. Examples	
6. Newton's laws. Statements and discussion. Defining the linear	Systematic exposition - lecture,	
momentum. Inertial and non-inertial reference frames. Galilei	demonstration, discussion, case	2 hours
transformations.	study. Examples	
7. The movement of the mass point under the influence of	Systematic exposition - lecture	
different types of forces. Constant force. Time-dependent force.	domonstration discussion case	1 hours
Speed-dependent force. Friction with air. Position-dependent force.	study Examples	4 110015
Applications.	study. Examples	
8. Dynamics of the mass point. Theorem of linear momentum for		
a mass point. Torque. The angular momentum. Theorem of angular	Systematic exposition - lecture	
momentum for a mass point. Work. Power. Kinetic energy.	demonstration discussion case	4 hours
Theorem of the variation of the kinetic energy. Potential energy.	study Examples	- nours
Conservative forces. Total energy. Conservation of mechanical	study. Examples	
energy. Friction forces.		
9. Dynamics of the mass points system. Definition of the system		
of mass points. Internal and external forces. Theorem of linear	Systematic exposition - lecture,	
momentum for a system of mass points. Theorem of angular	demonstration, discussion, case	2 hours
momentum for a system of mass points. The theorem of the	study. Examples	
variation of the total kinetic energy. Energy conservation for a		
system of particles.	Sustamatic apposition lacture	
10. The mass center of a system of mass points. Movement in the	domonstration discussion case	2 hours
frame. Decomposition theorems	study Examples	2 110015
	Sudy. Examples	
11. Collisions. Plastic collision. Elastic collision. Collision	demonstration discussion case	2 hours
coefficients.	study Fyamples	2 110013
12. Kinematics of the rigid body Rigid body model Translation	study. Examples	
and rotation. Composition of positions velocities and accelerations	Systematic exposition - lecture,	
of a rigid body. Poisson's formulas Euler's formulas Parallel plane	demonstration, discussion, case	2 hours
motion.	study. Examples	
13. Rigid body dynamics. Kinetic energy of rotation. Work. The		
power. Angular momentum of rotation. The moment of inertia	Systematic exposition - lecture,	
about an axis. The main axes of inertia. Steiner's theorem.	demonstration, discussion, case	2 hours
Calculation of moments of inertia.	study. Examples	
14. Rigid body statics. Composition of parallel forces. Torque.	Cristomatic amposition last	
Reducing a system of forces. Varignon's theorem. Equilibrium	domonstration discussion and	2 hours
conditions. The center of gravity of a particle system. Guldin's and	ctudy, Examples	∠ nours
Pappus's theorems.	suuy. Examples	
Bibliography:		
A. Hristev, <i>Mecanică și acustică</i> , Editura Didactică și Pedag	gogică, București, 1984.	
D. Kleppner, R. Kolenkow, An Introduction to Mechanics, 2	2nd edition, Cambridge University P	ress, 2013
🗆 C Kittel W D Knight M A Ruderman Cursul de Fizică F	<i>Jerkelev</i> Volumul I Mecanică Editi	ira Didactică și

tel, W.D. Knight, M.A. Ruderman, *Cursul de Fizică Berkeley*, Volumul I, Mecanică, Editura Didactică și Pedagogică, București, 1981.

• A.P. French, Newtonian Mechanics (M.I.T. Introductory Physics), 1st. Edition, W. W. Norton & Company, 1971. •

A.P. French, Vibrations and Waves (M.I.T. Introductory Physics), Reprint Edition, W. W. Norton & Company,

1971 • H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3rd Edition, Addison-Wesley, 2001. • C. Berlic, Note de curs (pdf) 8.2. Tutorials Teaching and learning techniques Bibliography: 8.3. Practicals Teaching and learning

8.3. Practicals	Teaching and learning	Ohannatiana
	techniques	Observations
Presentation of the mechanics laboratory. Labor protection training.	Locturo Dobato Examples	2 hours
Use of measuring instruments.	Lecture. Debate. Examples.	2 110015
Dimensional analysis, errors and error calculus. Data presentation:	Lecture. Debate. Examples.	2 hours
tables and graphs. Use of specialized software.	Guided practical activity.	2 110013
Free fall.	Guided practical activity.	2 hours
The simple pendulum. Determination of gravitational acceleration	Guided practical activity.	2 hours
Parallel axis theorem.	Guided practical activity.	2 hours
Reversible pendulum. Determination of gravitational acceleration	Guided practical activity.	2 hours
Dynamic study of torsion.	Guided practical activity.	2 hours
Tribometer	Guided practical activity.	2 hours
Measurement of moment of inertia and torque constant	Guided practical activity.	2 hours
Mach Pendulum	Guided practical activity.	2 hours
Determination of the elastic constant of a spring	Guided practical activity.	2 hours
Laboratory exan	Exam	2 hours
Bibliography:		

• C. Ciucu, Cristina Miron, V. Barna, *Lucrări practice. Mecanică Fizică și Acustică (I)*, Ed. Universității din București, București, 2009.

E. Barna, C. Ciucu, Cristina Miron, V. Barna, C. Berlic, *Lucrări practice. Mecanică Fizică și Acustică (II)*, Ed. Universității din București, București, 2010.

8.4. Project	Teaching and learning	
	techniques	Observations

Bibliography:

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The syllabus is consistent with the content of similar courses taught at universities in the country (Babeş-Bolyai University of Cluj Napoca, "Alexandru Ioan Cuza" University of Iaşi, West University of Timisoara) and abroad (University of Groningen, Netherlands, The University of Chicago, USA, MIT, USA, Technical University Wien, Austria, etc.), providing students with the formation of skills and abilities to analyze physical phenomena specific to classical mechanics, to plan and conduct specific experiments and to identify applications, abilities and skills of interest to business company and research institutes with activity in the field of physics, as well as in college education.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in
10.4 Lecture	- Knowledge of the fundamental notions in	1 Mid-term examination Partial	35%
10.4. Decture	Classical Mechanics:	examination of theoretical	5570
	- Appropriate achievement and correct	knowledge -written exam	
	understanding of the topics lectured in the		
	course;	2. Final examination.	
	- Demonstration of theoretical concepts	Examination of theoretical	35%
	correctly using the calculus equations;	knowledge - written exam	
	- Clarity, coherence and conciseness of the		
	presentation;	For online assessment, the	
	- The correct use of the studied physical	subjects will be electronically	
	models, formulas and calculus equations;	sent via email / Google	
	- Ability to exemplify;	Classroom / Microsoft Teams,	
	- Ability to apply the acquired knowledge	and during the exam students will	
	to solve mechanics exercises.	have their video camera turned	
		on, the exam being recorded.	

10.5.1. Tutorial	-	-	-					
10.5.2. Practical	- Familiarity with specific experimental	Colloquium examination	30%					
	techniques and infrastructure of the							
	laboratory;							
	- Applying specific methods of solving a							
	given exercise;							
	- Interpretation of results.							
10.5.3. Project	-	-	-					
10.6. Minimal requirements for passing the exam								
- Obtaining a minim	- Obtaining a minimum grade of 5 in each test.							
- Understanding the	notions of trajectory, speed and acceleration							
- Knowledge and ur	nderstanding of the Newton's laws							
- Knowledge of con	servation theorems and laws for the mass poin	t and the system of mass points.						
- Knowledge of the	laws of collision.							
- Understanding the	notion of moment of inertia							
- Calculation of mor	ments of inertia for simple systems							
- Knowledge of equ	ilibrium conditions for the rigid body							
Lessons attendance:	at least 50% of the number of class hours and	compulsory attendance at all laborat	tory sessions.					
Requirements for ge	etting mark 10 (10 points scale)							
Correct answer	to all the subjects indicated for obtaining grad	e 10						
• Skills, well-argu	ied knowledge							
• Demonstrated ability to analyze phenomena and processes								
Personal approa	ch and interpretation.							

Date 8.11.2021	Teacher's name and signature Assoc. Prof. Catalin Berlic	Practicals/Tutorials instructor(s) name(s) and signature(s) Assoc. Prof. Catalin Berlic
-------------------	--	---

Date of approval 11.11.2021

Head of Department Prof.univ.dr. Alexandru JIPA

DI.104F.EN Molecular Physics and Heat I

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics,
	Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit tit	le	Molecular Physics and Heat I							
2.2. Teacher					Conf. dr. Anca Du	mitru			
2.3. Tutorials/Prace	ticals ins	structor(s)		_	Conf. dr. Anca Du	mitru			_
2.4. Year of		2.5.		2.6	. Type of		2.7. Type of	Content ¹⁾	DF
study	1	Semester	1	1 evaluation		E	course unit	Type ²⁾	DI

¹⁾ fundamental (DF), speciality (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in 4	4	distribution:	Lectures	2	Tutorials	-	Practicals	2	Project	-]
--------------------------	---	---------------	----------	---	-----------	---	------------	---	---------	---	---

						_		_		
curriculum										
3.2. Total hours per	EG	dictribution	Loctures	70	Tutoriale		Dracticale	20	Droject	
semester	50	uistribution.	Lectures	20	Tutorials	-	Placticals	20	Project	-
3.3 Distribution of estimated time for study								hours		
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 25						25				
3.3.2. Research in library, study of electronic resources, field research							15			
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks							25			
3.3.4. Examination 4						4				
3.3.5. Other activities 0						0				
3.4. Total hours of individual study 65										
3.5. Total hours per semester 125										
3.6. ECTS 5										

4. Prerequisites (if necessary)

······································						
4.1. curriculum	-					
4.2. competences	-					

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Amphitheater equipped with multimedia devices
5.2. for practicals/tutorials	Set of practical work illustrating the topics covered in the course; Consumables;
	Computers and software for data analysis

6. Specific competences acquired

Professional	C1 - Identification and proper use of the key laws and principles of physics in a given context.
competences	C2 – Solving imposed condition physics problems
	C3 - Apply knowledge of physics in experiments using standard laboratory equipment
	C4 – Communication and analysis of didactic, scientific and dissemination of information
Transversal	CT1- Achievement of the professional duties in an efficient and responsible way with compliance
competences	with deontological legislation specific to the domain under qualified assistance.
-	CT3 - Effective use of information, communication and training assistance, both in Romanian and in
	English.

7. Course objectives

7.1. General objective	The assimilation of general framework of macroscopic and						
	microscopic studies of thermal phenomena						
7.2. Specific objectives	Knowledge and understanding						
	-Understanding of general structure of thermodynamics						
	- The correct assimilation of thermodynamic laws for reversible and irreversible						
	processes						
	- The knowledge of description of thermodynamic system by state equations and						
	the connections with response functions.						
	- understanding the concepts of macroscopic studies of thermal phenomena						
	Explanation and interpretation						
	Connection between the theoretical concepts defined in lecture and experimental						
	investigation in practical work in the laboratory. The practical application of the						
	general principles in solving the concrete problems.						

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
Introduction: Macroscopis description of system. Fundamental concepts. Thermodynamic system. Surroundings, State variables, Boundaries. Clasification of the thermodynamics systems. State variable. Clasification of state variable. Use of partial derivate in thermodynamics.	Systematic exposition - lecture. Conversation. Examples	2 horus
Thermal equilibrium and temperature. General law of	Systematic exposition -	4 hours

thermodynamics. The zero law of thermodynamics. Temperature measurement. Temperature scales. Temperature measurement devices. Pressure. Pressure measurement. Dalton Law of partial pressure.	lecture. Conversation. Examples	
Ideal gas laws. Thermal Equations of state. Thermal coefficients. General laws of thermal expansion. Applications of thermal coefficients. Cyclical relation. The relation between thermal coefficients. Equivalence between equation of state and the thermal coefficients for ideal gas.	Systematic exposition - lecture. Conversation. Examples. Problems.	4 hours
State and transfer variables. Reversible and irreversible processes. Heat. Mechanical work. Sign Conventions. The first law of thermodynamics (primary formulation and general statement). Caloric coefficients. Applications of the first law in the basic processes: adiabatic, isothermal, isochoric, isobaric and polytropic. Enthalpy. Phase changes. Latent Heat. Newton law of cooling. Caloric equation of state. Free expansion-Joule Experiment. Joule-Thomson Experiment.	Systematic exposition - lecture. Conversation. Examples. Problems.	4 hours
Primary statement of the second law of thermodynamics; Heat engine: monothermal and bithermal heat engine; Carnot Theorem; Absolute thermodynamics temperature; Clausius equality, Efficiency of the heat engine; Clausius' integral for reversible processes; Entropy and the general statement of the second law for reversible processes.	Systematic exposition - lecture. Conversation. Examples	4 hours
Entropy in reversible processes. Clausius inequality. Clausius' integral for irreversible processes. The general statement of the second law for irreversible processes. The general statement of the second law of thermodynamics. Entropy and irreversibility. The principle of maximal entropy. Properties of the entropy. Equivalent statements of the second law.	Systematic exposition - lecture. Conversation. Examples. Problems.	4 hours
Partial derivate and Maxwell relations. Fundamental equation of thermodynamics. Differential relationships between state functions and state parameters: a) T,V independent variable; b) P,T independent variable and c) P,V independent variable. TdS equations.	Systematic exposition - lecture. Conversation. Examples	2 hours
Heat engines: Stirling, Otto, Diesel and Brayton. Refrigerators. Heat pumps. Examples.	Systematic exposition - lecture. Conversation. Examples	2 hours
Review of the concepts and notions introduced in the Molecular Physics I.	Systematic exposition - lecture. Conversation. Examples	2 hours
 Bibliography: V. Filip, Introductory Thermal Physics, Ed. Univ. Vlad Popa-Nita, Molecular physics (first part-The S.Stefan, Fizica Moleculara, Ed. Univ. Bucuresti, C.N. Plavitu, Fizica Fenomenelor Termice, Parter S. Turns, Thermodynamics. Concepts and Applic W. Greiner, L. Neise, H. Stocker, Thermodynam S. Stefan si V. Filip, Fizica Fenomenelor Termice 	Buc., 2006. ermodynamics), Ed. Univ. Buc. 2006 a I, Ed. Hyperion, 1992 ations. Ed. Cambridge Universit ics and Statistical Mechanics, Ed. Culegere de Probleme, Ed. Un	(1994). y Press, 2006 1. Springer, 2006 iv. Buc., 2002.
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations

Bibliography: whatever you decide to indicate		
8.3. Practicals [practical activities, projects, etc.]	Teaching and learning techniques	Observations
 Introduction to experimental errors Fortin barometer Determination of specific heat of a solid body by calorimetric method. Verifying the Dalton' law of partial pressure. Determination of specific heat of a liquid by Hirn calorimeter. Latent heat of crystallization. Mechanical equivalent of heat Thermal equation of state for ideal gases Heat capacities of gases (isobaric and isochoric molar heat capacities) Joule-Thomson effect. Determination of relative density and molar mass of gases through effusion method 	Guided practical activity	24 hours
Laboratory examination	Reports of practical works and oral examination	4h
Bibliography: 1. Sabina Stefan (coordonator) Fizica moleculară –Lucrari 2. http://www.fizica.unibuc.ro/Fizica/Studenti/Cursuri/Ma 8.4. Project [only if included in syllabus]	i practice, Ed. Univ. Bucuresti. in.php Teaching and learning	Observations
Bibliography:	tecnniques	

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit forms competences and abilities which are important for an undergraduate student in the field of modern Physics, corresponding to national and international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of exposition correct use of knowledge and theminology used in thermal physics 	1. Partial examination. Written test examination of theoretical competences.	30%
	 ability to indicate/analyse specific examples correct use of equations/mathematical methods/physical models and theories 	2. Final examination. Written and oral test examinations of theoretical competences	40%
10.5.1. Tutorials			
10.5.2. Practicals	 ability to use specific experimental methods/apparatus ability to analyse and interpret the characterization data ability to present and discuss the results 	Examination of Lab reports	30%
10.5.3. Project [only if			

included in syllabus]			
10.6. Minimal requirements for	or passing the exam		
Fulfillment of at least 50% of	each of the criteria that determine the fin	al grade.	
Requirements for mark 5 (10 J	points scale)		
Completion of 80% laboratory	and mark 5 to the colloquium		
Minimal knowledge of the theoretical concepts and of the practical works such as: Thermodynamic system. Properties of			
state and process variable. General statement of first and second law of thermodynamics and their applications for			
isoprocesses. Thermal and cal	oric coefficient. Heat engines efficiency.		
Requirements for getting mark	x 10 (10 points scale)		
• Correct answer to all the s	ubjects indicated for obtaining grade 10		
 Skills, well-argued knowle 	edge		
 Demonstrated ability to an 	alyze phenomena and processes		
Personal approach and inte	erpretation.		

Date 5.11.2021

Teacher's name and signature Conf dr. Anca Dumitru

Date of approval 11.11.2021

Conf. dr. Anca Dumitru

and signature(s)

Practicals/Tutorials instructor(s) name(s)

Head of Department Prof. dr. Alexandru Jipa

DI.107F.EN Scientific English I

University of Bucharest
Faculty of Foreign Languages and Literatures
Department of Modern Languages
Physics
Undergraduate/Bachelor of Science
Physics (in English)
Full-time study

2. Course unit

2.1. Course unit title	Scientific Eng	glish I					
2.2. Teacher		Lecturer Monica Oanca, PhD					
2.3. Tutorials/Practicals inst	ructor(s)		-				
2.4. Year of study	2.5. Semester		2.6. Type of		2.7.	Content 1)	DC
I		I I	evaluation	C	Classification	2)	
		1 I	e vuluation		of course unit	Type 2)	DI
					of course unit		

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	1	distribution:	Lectures	-	Tutorials	1	Practicals	-	Project	-
3.2. Total hours per	14	distribution:	Lectures	-	Tutorials	14	Practicals	-	Project	-
semester										
3.3 Distribution of estimat	ed tim	ne for study								hours
3.3.1. Learning by using o	ne's o	wn course notes	s, manuals,	lecture	notes, biblio	graphy				2
3.3.2. Research in library, study of electronic resources, field research 3					3					
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks					2					
3.3.4. Examination 4					4					
3.3.5. Other activities -				-						
3.4. Total hours of individual study 7										
3.5. Total hours per semes	ter			2	25					
3.6. ECTS				1						

4. Prerequisites (if necessary)

4.1. curriculum	A good command of English – level B2
4.2. competencies	-

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	-
5.2. for tutorials/projects	If the seminar takes place in a classroom, a blackboard and a video projector are required
	The seminar can be held online, and each student is responsible for making sure that he/she has a microphone. It is advisable to turn the camera on during the
	seminar.

6. Specific competences acquired

Professional	1. Defining and describing the main notions of grammar and vocabulary
competencies	2. Defining the five specific competencies:
	Understand a written text
	Understanding a listened message
	Conducting a conversation
	Delivering an oral presentation of a topic
	Writing compositions
Transversal competencies	 Develop the reading skills in English to read texts needed for Physics classes and seminars Writing a project on a physics topic that will be presented orally in front of the classmates Write an essay on a Physics related topic

7. Course objectives

11 douise objecuites	
7.1. General objective	Understanding and using the specialized vocabulary necessary for reading texts and then
	elaborating essays on Physics related topics.
7.2. Specific objectives	1. Knowledge and understanding (knowledge and proper use of vocabulary related to Physics)
	Revise general knowledge of English and apply it to comprehension in Physics-related texts as
	mentioned in the seminar topics
	2. Explanation and interpretation (explaining and interpreting some ideas, projects, processes,
	as well as the theoretical and practical contents of the discipline)
	Specialized expressions will be explained and commented upon; their use in the specific
	context of the English language will be emphasised. Some physics concepts will be translated
	and the difference between English and Romanian will be analysed. False friends, as well as
	structures that appear only in English will be mentioned.
	3. Instrumental - applications (design, management and evaluation of specific practical
	activities; use of methods, techniques and tools for investigation and application).
	Students will use their computers to design PowerPoint presentations, as well as other tools to
	write their projects.
	4. Attitudinal (manifestation of a positive and responsible attitude towards the scientific field /
	cultivation of a scientific environment focused on democratic values and relations / promotion
	of a system of cultural, moral and civic values / optimal and creative capitalization of one's
	own potential in activities)
	Students will develop the ability to use English texts for writing a seminar paper in English for
	one of the specialized seminars (in the field of physics). During the seminar the stress will be
	on originality and correct citation of sources.
	Students will be advised to assume their responsibility for their work and they will be taught to
	engage in various projects and in partnership with other specialists
	Teamwork – collaboration is encouraged, but provided that each participant has a well-defined
	contribution.

8. Contents

8.	2. Tutorials	Teaching and learning techniques	Observations
•	Motivation to become a physicist The Concept of error	In all seminars students will interact with one another and will	All seminars will use specialized texts written
•	The rhythm of our life The Present Tenses	have to solve vocabulary exercises and repeat grammar	by native speakers (excerpts from books,
•	Education The Past Tenses	structures. Texts related to the proposed	magazines, etc.), vocabulary and
•	Finding the perfect job Distance and displacement	topics will be discussed and comprehension exercises will be	grammar exercises, as well as recordings of
•	Speed and velocity Kinematic equations	done. Conversations on these topics will be initiated, and	native English speakers.
•	Passive voice Causative	listening exercises will be conducted, too.	
•	Contrasting ideas 14. Students Presentations	presentations on topics related to one of the subjects studied.	

Bibliography:

McCarthy Michael, Felicity O' Dell, English Vocabulary in Use, (Upper Intermediate and Advanced), Cambridge University Press, 2002, 2005.

McCarthy Michael, Felicity O' Dell, Test your English Vocabulary in Use, (Upper Intermediate and Advanced), Cambridge University Press, 2002, 2005

Dearholt, Jim, Career Paths, Mechanics, Express Publishing, 2012

Virginia Evans, Jenny Dooley, Upstream Intermediate, Express Publishing, 2015.

Jan Bell Roger Gower, Advanced Expert , Coursebook, Pearson, 2017.

P. Frauenfelder and P. Huber, Introduction to Physics, Translated by F. S. Levin and J. L. Weil, Pergamon Press, 1978.

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The seminars follow the format of the foreign language seminars within the University of Bucharest and are in accordance with the international standards regarding the level of linguistic competences.

10. Assessment

A ctivity type	10.1 Accossment criteria	10.2. Assessment	10.3. Weight in			
Activity type	10.1. Assessment Chteria	methods	final mark			
10.5.1. Tutorial	The ability to understand and use	Evaluation by written tests	40%			
	correctly the vocabulary discussed	Evaluation by oral tests	40%			
	during the seminars	portfolio	20%			
10.6. Minimal requirements for	10.6. Minimal requirements for passing the exam					
- correct acquisition of level B	- correct acquisition of level B2 of English,					
- correct use of the main notions of grammar						
- correct use of specialized terms						
- solving all the classwork posted on Google Classroom						

Date 10.11.2021

0.1

Teacher's name and signature Lecturer Monica Oanca, PhD

Practicals/Tutorials instructor(s) name(s) and signature(s)

Date of approval 11.11.2021

Head of Department Lect. univ. dr. Raluca Andreescu

DI.108F.EN Physical Education and Sport I

1. Study program	
1.1. University	University of Bucharest

1.2. Faculty	-
1.3. Department	Department of Physical Education and Sports
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Physical Edu	Physical Education and Sport I					
2.2. Teacher								
2.3. Tutorials/Practicals instructor(s)		Lector univ dr.Cătălin Șerban						
2.4. Year of study		2.5. Semester		2.6. Туре		2.7.	Content ¹⁾	DC
	I		Ι	of	V	Classification	True a 2)	DI
				evaluation		of course unit	туре ->	וט

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per	1	distribution.	Lectures	0	Tutorials	0	Practicals	0	Project	0
week in curriculum	1	distribution.	Lectures	Ŭ	ratoriais	Ŭ	Tracticals	Ŭ	rioject	Ŭ
3.2. Total hours per	14	distribution	Locturos	0	Tutoriale	0	Practicals	1/	Droject	0
semester	14		Lectures	0	Tutoriais	0	Flacticals	14	riojeci	0
3.3 Distribution of es	stimat	ed time for stud	у							hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 0						0				
3.3.2. Research in library, study of electronic resources, field research 0						0				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks 0					0					
3.3.4. Examination 4					4					
3.3.5. Other activities 7					7					
3.4. Total hours of individual study 7						•				
3.5 Total hours per semester 25										

3.6. ECTS

4. Prerequisites (if necessary)

4.1. curriculum	-
4.2. competencies	-

1

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	-
5.2. for practicals/tutorials/projects	-

6. Specific competences acquired

Professional	 Knowledge and understanding.
competencies	-To acquire general knowledge about physical education and highlighting its specific content
	-To gain knowledge about the effects of motor activities on the body;
	To accumulate notions regarding the particularities of the physical education lesson at the level of
	non-profile higher education;
	-To apply the formative knowledge, in the field of physical education and sports, at the level of daily
	activities.
	 Explanation and interpretation
	-To establish the objectives and tasks specific to the activities carried out;
	-To develop the capacity to practice systematic and independent physical exercises;
	-To capitalize on communication in sports as a way of social integration;
	-To develop the ability to understand, operate and expand motor activity in free time and recreation;
	-To develop the ability to capitalize on the positive effects of physical education on personality and
	quality of life;
	Instrumental – applications
	-To design and apply exercise programs adapted to the objectives of the activity carried out;
	-To coordinate, integrate and participate in sports activities:
	-To identify solutions regarding the optimization of free time;
<u> </u>	· · · · · · · · · · · · · · · · · · ·

	-To mobilize human resources in volunteer actions;
	- 10 know the evaluation methods specific to physical education.
Transversal	-To integrate and participate in sports activities promoting the values of fair play;
competencies	-To develop principled and constructive relationships with the social partners;
	-To adapt, in optimal conditions and in an efficient way, to new situations;
	-To develop pro-active attitudes, positive thinking and interpersonal relationships;
	- To be aware of the importance of exercising on maintaining an optimal state of health, increasing
	the body's endurance and increasing the capacity for physical and intellectual work.

7. Course objectives

7.1. General objective	To be aware of the importance of exercising on maintaining an optimal state of health, increasing the body's endurance and increasing the capacity for physical and intellectual work
7.2. Specific objectives	 Maintaining an optimal state of health of students and improving the resistance of their body to the action of environmental factors and the specifics of professional activity; Ensuring superior indices of correct and harmonious physical development of the body; Improving skills, motor skills and knowledge on the practice of a sport; Cultivating the skills and habits of students to practice independently, in their free time, exercises and sports for corrective, fortifying, recreational or compensatory purposes; Engaging the mass of students in the systematic activity of practicing physical exercises, tourism and sports; Improving moral-volitional and intellectual qualities and traits, aesthetic sense and social responsibility

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
Bibliography:		
8.2. Tutorials	Teaching and learning techniques	Observations
Bibliography:		
8.3. Practicals	Teaching and learning	Observations
Numbei of hours -14	techniques	
Introductory lesson – 1h	Audiovisual techniques (Power	Practical work
Initial verification -1h	Point presentation, teaching film	
Learning the basic technique – aerobic gymnastics and	presentation, audio material	
fitness – 3h	presentation)	
Learning the main tehnical elements with the ball		
(volleyball handball) – 4h		
Acquiring yhe main collective tactical action of attack		
end defense (volleyball handball) – 3h		
Intermediate verification- 2h		
Bibliography:		

Bibliografie Obligatorie:

• Ganciu, M., (coord), colectiv DEFS, 2013, *Curs de educație fizică pentru studenții Universității din București*, Editura Universității din București, București

• Ganciu, M., Aducovschi, D., Gozu, B., Stoica, A.M., Stoicoviciu, A., Gulap, M., Cristea, M., 2010, *Activitatea fizică independentă și valorificarea prin mișcare a timpului liber – Vol.I*, Editura Universității din București, București Stoica, A., 2011, *Curs practic de gimnastică aerobică pentru studenții din Universitatea din București*. Editura Universității din București

Bibliografie facultativă:

• Colectivul DEFS, coord. Aducovschi D.,2008, *Sistemul de evaluare la educație fizică – pe discipline sportive – în Universitatea din Bucuresti*, Editura Universității din București

Colectivul DEFS, 2005, Designul instrucțional în optimizarea instruirii echipelor reprezentative ale			
Universității din București, Editura Universității din București			
C. Alte surse utile			
DVD-uri, internet			
8.4. Project	Teaching and learning techniques	Observations	
Bibliography:			

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

Physical education is a social activity with special contributions to the social-professional integration of young people. The formative function of physical education will contribute to the development of these qualities and abilities, which will allow the future specialist to acquire the chosen profession as quickly and better as possible, to practice it with high efficiency, to be able to engage in various social activities. to be able to act independently and creatively on the environment and on his own person.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture			
10.5.1. Tutorial			
10.5.2. Practical	- interest in the discipline through systematic - participation in practical lessons (1h / week)		60%
	- initial and intermediate testing by control tests and trials	individual assessment	30%
	- participation in sports competitions		10%
10.5.3. Project			
10.6. Minimal requirements for passing the examparticipation in 50% of the total number of lessonspassing motor tests			

• participation in a sports competition

• to prove the minimum acquisition of the general notions of physical education and sports

Date 10.11.2021 Teacher's name and signature Lector univ dr.Cătălin Şerban Practicals/Tutorials instructor(s) name(s) and signature(s)

Date of approval 11.11.2021

Head of Department Prof. Stoica Alina, PhD

DI 109F.EN Equations of Mathematical Physics

 1. Study program

 1.1. University

 University of Bucharest

1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical physics, Mathematics, Optics, Plasma, and Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Equations of Mathemat			atical Physics					
2.2. Teacher				Conf. Dr. Radu S	Slobod	eanu		
2.3. Tutorials instructor(s)			Conf. Dr. Radu S	Conf. Dr. Radu Slobodeanu				
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content ¹⁾	DS
	Ι		II	evaluation	Е	Classification	Type ²⁾	DI
						of course unit		

1) fundamental (DF), specialty (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours / week in curriculum	5	distribution:	Lectures	2	Tutorials	3	Practical	-	Project	-
3.2. Total hours / semester	70	distribution:	Lectures	28	Tutorials	42	Practical	-	Project	-
3.3 Distribution of estimate	ed tin	ne for study					I			Hours
3.3.1. Learning by using or	ne's o	wn course notes	s, manuals,	lecture	notes, biblio	graphy	7			20
3.3.2. Research in library,	study	of electronic re	sources, fiel	d rese	arch					11
3.3.3. Preparation for tutorials/projects/reports/homeworks 20					20					
3.3.4. Examination 4					4					
3.3.5. Other activities -					-					
3.4. Total hours of individual study 51					•					
3.5. Total hours per semester 125										
3.6. ECTS 5										

4. Prerequisites (if necessary)

4.1. curriculum	The 1 st year courses Real and Complex Analysis and Algebra, Geometry and Differential
	equations. High school mathematics
4.2. competences	Computational skills

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom with video projector. Access to the library and to internet resources
	(Moodle or Google Classroom)
5.2. for tutorials/projects	Classroom with video projector. Mathematica software.

6. Specific competences acquired

Professional competencies	 solving physics problems using analytical, numerical and statistical methods communication and analysis of information from Physics, with didactic purpose or for research and popularization. cross-disciplinary approach of some topics in the area of Physics.
Transversal Competencies	Efficient use of informational sources and of professional training and dissemination resources in a worldwide spoken language.

7. Course objectives

7.1. General objective	Assimilation of various techniques of solving partial differential equations
	(PDE) of second order and integral equations.
7.2. Specific objectives	• Developing problem solving skills and programming skills with
	MATHEMATICA software for dealing with analytic methods in PDE and
	integral equations, Fourier expansion in orthogonal polynomials, Bessel
	functions, spherical harmonics functions. • Developing the ability to interpret
	physically a mathematical result/solution and to formulate mathematically a

physical hypothesis.

8. Contents		
8.1. Lectures [chapters]	Teaching techniques	Observations
Elements of functional analysis. Hilbert spaces, Hilbert	Lecturing. Demonstrating	3h
bases. Fourier trigonometric series. Linear and bounded	(Examples). Classroom	
operators on a Hilbert space. Linear functionals. Riesz	discussions.	
theorem. The adjoint of a bounded linear operator on a		
Hilbert space.		
Compact operators. Eigenvalues and eigenvectors.	Idem	3h
Fredholm alternative. Applications to integral equations.		
Second-order linear differential equations. Power		2h
series method and Frobenius method.		
Sturm-Liouville theory and special functions . Regular	Idem	6h
Sturm-Liouville boundary value problems. Orthogonal		-
polynomials. Bessel functions. Spherical harmonics.		
Applications to explicitly solvable quantum systems.		
Integral transforms , Laplace and Fourier transform	Idem	2h
Applications in spectroscopy and imaging		
Problems in the theory of partial differential	Idem	2h
equations Initial and boundary conditions. The	huchi	211
classification and the reduction to canonical form for		
semilinear second-order PDF		
Filintic equations Green's identities and the integral	Idem	4b
representation formula with 3 potentials (Newtonian	lucin	711
notential simple layer and double layers notentials)		
Maximum principle, mean value theorem Boundary		
value problems (Dirichlet and Neumann) for Laplace		
aduation Croop's function for the interior Dirichlet		
problem Applications in electrodynamics		
Hymerbalic aquations. Solutions of the wave equation	Idom	- 2h
in the cases of $n=1,2,2$. Domain of dependence, region	Idelli	211
of influence. Hungene' principle. The finite ribrating		
of influence. Huygens principle. The finite vibrating		
String problem. Separation of variables method.	T.J	21
Parabolic equations. Maximum principle. The solution	Idem	2n
of the Cauchy's problem. Fourier's method of separation		
of variables for solving the mixed problem.	7.1	21
Distribution theory. Operations with distributions, their	Idem	2h
Fourier transform. The notion of fundamental solution		
of a linear PDE, weak formulation of a PDE.		
Bibliography:		
G. Artken, H. Weber, F.E. Harris, <i>Mathematical Methods</i>	for Physicists, 7th edition, Elsevier 2	011.
I. Armeanu, Functional Analysis (in Romanian), Ed.Unive	rsității din București, 1998.	
V. Barbu, Partial differential equations and boundary value	<i>le problems</i> , Springer, 2013.	
V. Branzánescu, O. Stánáșilă, Special Topics în Mathemat	<i>ics</i> (in Romanian), Editura ALL 1998	3.
R. Courant, D. Hilbert, <i>Methods of Mathematical Physics</i> ,	Vol. 2, Partial Differential Equations	s, Wiley, 1989.
M. Reed, B. Simon, Methods of Modern Mathematical Ph	vsics, vol I-IV, Academic Press, 1972	2-1978
N. Teodorescu, V. Olariu, Ordinary and Partial Differenti	al Equations (in Romanian) vol. I-III	, Ed. Tehnică, 1978-1980.
A. N. Tikhonov, A. A. Samarskii, <i>Equations of Mathemati</i>	cal Physics, Dover Publications, Rep	orint edition 2011.
V.S. Vladimirov, Equations of mathematical physics, Mar	cel Dekker, New York, 1971.	
P.J. Olver, Introduction to partial differential equations, S	pringer, 2014.	
8.2. Tutorials	Teaching & learning techniques	Observations
The seminar follows the course content. The problems	Exercises and problem solving.	42h
arising in theoretical physics related to special functions,	Guided work	
Fourier series expansion, Fourier transform will be		
supported with examples in MATHEMATICA.		
Bibliography:		
C. Constanda, Solution techniques for elementary partial of	lifferential equations, CRC Press, 20	16.

P. DuChateau, D. W. Zachmann, *Theory and problems of partial differential equations*, **Schaum's outline series**, McGraw Hill, 1986.

N.N. Lebedev, Special Functions & Their Applications, Dover Publications, 1972

Gh. Mocică, Problems of Special Functions (in Romanian), Editura Didactica si Pedagogica, 1988

P.J. Olver, Introduction to partial differential equations, Springer, 2014

R. Slobodeanu, A. Stoica, Ecuațiile Fizicii Matematice. Introducere prin probleme rezolvate (in Romanian), 2022.

T. Stanasila, V.Olariu, Ordinary and Partial Differential Equations (in Romanian), Editura Tehnica, 1982

V.S. Vladimirov, A collection of problems on the equations of mathematical physics, Springer, 2013.

8.3. Practicals	Teaching and learning techniques	Observations
-	-	-
Bibliography: -		
8.4. Project	Teaching and learning techniques	Observations
-	-	-
Bibliography: -		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences and computational abilities that are mostly important for an undergraduate student in Physics, according to the (inter)national standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other Romanian as well as European universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	- coherence and clarity of exposition	written exam (alternatively:	80%
	- ability to apply theoretical results and the	two partial evaluations)	
	standard solving techniques in order to		
	solve simple partial differential equations		
	with initial/boundary value conditions.		
	- ability to analyse specific examples		
10.5.1. Tutorial	Correct identification and application of	Homeworks	20%
	the method needed for problem solving		
10.5.2. Practical	-	-	-
10.5.3. Project	-	-	-

10.6. Minimal requirements for passing the exam

At least 50% of points at the exam and 50% of due homeworks.

Being present at minimum 50% of the tutorials.

Requirements for getting mark 5 (10 points scale)

• Students must attend at least 50% of the lecture hours and at least 75% of the tutorial ones.

• Fulfillment of at least 50% of each of the criteria that determine the final grade.

Requirements for getting mark 10 (10 points scale)

- Correct answer to all the subjects indicated for obtaining grade 10
- Skills, well-argued knowledge
- Demonstrated ability to analyze phenomena and processes

• Personal approach and interpretation.

Date 28.10.2021

Teacher's name and signature Conf.dr . Radu Slobodeanu

Date of approval 11.11.2021

Practicals/Tutorials instructor(s) name(s) and signature(s) Conf.dr . Radu Slobodeanu

Head of Department Lect.dr. Roxana ZUS

DI 110F.EN Complex Analysis

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical physics, Mathematics, Optics, Plasma, and Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	e Complex Analysis							
2.2. Teacher			Conf. Dr. Radu	Slobod	eanu			
2.3. Tutorials instructor	:(s)			Conf. Dr. Radu	Slobod	eanu		
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DC
	Ι		II	evaluation	E	Classification of course unit	Type ²⁾	DI

1) fundamental (DF), specialty (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

	-			-						
3.1. Hours / week in curriculum	4	distribution:	Lectures	2	Tutorials	2	Practical	-	Project	-
3.2. Total hours /	56	distribution	Locturos	28	Tutorials	28	Dractical		Droject	_
semester	50	distribution.	Lectures	20	Tutoriais	20	Flactical	-	Project	-
3.3 Distribution of estimate	ed tin	ne for study								Hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					15					
3.3.2. Research in library, study of electronic resources, field research				15						
3.3.3. Preparation for tutorials/projects/reports/homeworks				10						
3.3.4. Examination 4					4					
3.3.5. Other activities -					-					
3.4. Total hours of individual study 40										
3.5. Total hours per semester 100										
3.6. ECTS 4										

4. Prerequisites (if necessary)

4.1. curriculum	The 1 st semester courses <i>Real Analysis</i> and <i>Algebra</i> , <i>Geometry and Differential equations</i> .	High
	school mathematics	
4.2. competences	Computational skills	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom with video projector. Access to the library and to internet resources
	(Moodle or Google Classroom)
5.2. for tutorials/projects	Classroom with video projector. Mathematica software.

6. Specific competences acquired

Professional competencies	 solving physics problems using analytical, numerical and statistical methods communication and analysis of information from Physics, with didactic purpose or for research and popularization. cross-disciplinary approach of some topics in the area of Physics.
Transversal Competencies	Efficient use of informational sources and of professional training and dissemination resources in a worldwide spoken language.

7. Course objectives

7.1. General objective	Knowledge, understanding and proper use of the fundamental concepts of
· · · · · · · · · · · · · · · · · · ·	

	complex analysis, with applications in physics.				
	Acquiring a solid mathematical basis for understanding and modeling of				
	physical phenomena.				
7.2. Specific objectives	Knowledge and proper use of specific notions specific to complex analysis:				
	holomorphic function, Cauchy-Riemann equations, contour integral, Taylor and				
	Laurent series, residue theorem.				
	Development of intuition and logical, abstract thinking. Develop the ability to				
	work in a team. Development of computing skills.				

8. Contents		
8.1. Lectures [chapters]	Teaching techniques	Observations
Complex numbers. Operations with complex numbers,	Lecturing. Demonstrating	3h
trigonometric representation. Elementary point set	(Examples). Classroom	
topology.	discussions.	
Complex functions . Limits and continuity. Complex	Idem	2h
differentiability. Examples.		
Holomorphic functions. Cauchy-Riemann equations.	Idem	4h
Relation with harmonic functions.		
Complex Integration. Complex line integral. Cauchy's	Idem	4h
Theorem. Cauchy's Integral Formula. Applications		
Power Series. Taylor series and analyticity. Uniqueness	Idem	3h
and analytic continuation		
Laurent series and singularities. Classification of	Idem	3h
isolated singularities. Meromorphic functions		
The Calculus of Residues. Index of a point with respect	Idem	3h
to a closed curve. Residue of a holomorphic function at an		
isolated singularity. The Residue Theorem		
Evaluation of real integrals using the Residue Theorem.	Idem	3h
Conformal mapping . Riemann Mapping Theorem. Linear	Idem	3h
fractional transformations. Applications to potential theory		
problems (planar fluid flows, Laplace equation with		
boundary conditions, Poisson integral formula), and to		
Green's function for Poisson equation.		
50.00		

Bibliography:

L. V. Ahlfors, *Complex Analysis*. *An Introduction to the Theory of Analytic Functions of One Complex Variable*, McGraw-Hill, 3rd edition 1979.

G. Arfken, H. Weber, Mathematical Methods for Physicists, Elsevier Academic Press, 2005.

N. Cotfas, L. Cotfas, *Elemente de analiză matematică* (in Romanian), Ed. Universității din București, 2010.

A. Halanay, V. Olariu, S. Turbatu, Analiză matematică, Ed. Didactică și Pedagogică, 1983. (in Romanian)

E. Kreyszig, Advanced Engineering Mathematics, 10th edition, Wiley, 2011.

W. Rudin, Real and Complex Analysis, McGraw-Hill, 1986.

E. M. Stein, R. Shakarchi, Complex Analysis, Princeton University Press, New Jersey, 2003.

I. Şandru, Analiză complexă, note de curs. (in Romanian),

C. Timofte, Complex Analysis, Ed. Universității din București, 2014.

8.2. Tutorials	Teaching & learning techniques	Observations			
The seminar follows the course content. Some	Exercises and problem solving.	28h			
computation of power series and integrals will be	Guided work				
supported with examples in MATHEMATICA.					
Bibliography:					
I. Armeanu, D. Blideanu, N. Cotfas, I. Popescu, I. Şandru, Pa	robleme de analiză complexă, Ed.T	ehnică, 1995 (in			
Romanian)					
S. Lipschutz, J. Schiller, D. Spellman, M. Spiegel, Schaum's	Outline of Complex Variables, 2 nd	ed. (Schaum's Outline			
Series), McGraw-Hill, New York, 2009.					
K.F. Riley, M.P. Hobson, S.J. Bence, Mathematical Methods for Physics and Engineering, 3rd ed., Cambridge					
University Press, 2006.					
P.J. Olver, <i>Complex analysis and conformal mapping</i> , University of Minnesota 806, 2017.					
8.3. Practicals	Teaching and learning	Observations			

	techniques	
-	-	-
Bibliography: -		
8.4. Project	Teaching and learning	Observations
	techniques	Observations
-	-	-
Bibliography: -		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops theoretical and practical skills and abilities that are important for undergraduate Physics students, corresponding to national and international standards. The content and teaching methods were chosen after an in-depth analysis of the content of similar course units in the curriculum of other universities in Romania or in the European Union. The content of the discipline is in accordance with the requirements and expectations of the representatives of the epistemic communities, of the professional associations and of the main employers of the future graduates in the field related to the program.

10. Assessment			
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of arguments, capacity to cite appropriate general results from the course ability to manipulate complex functions and the associated notions of complex differentiability and integrability ability to analyse specific examples, to compute contour integrals using residues, expansion in power series and various planar potentials (using conformal mapping) 	Written exam and oral assessment (online or "face to face"). For online assessment, topics will be submitted electronically, by email, or through Google Meet or Microsoft Teams platforms. The exam will be recorded and the students will have their video camera turned on.	80%
10.5.1. Tutorial	Ability to apply the specific results given in the course to problem solving. Ability to interpret correctly the results obtained.	Homeworks, seminar activity.	20%
10.5.2. Practical	-	-	-
10.5.3. Project	-	-	-
10.6. Minimal requirem At least 50% of points a Being present at minim	nents for passing the exam at the exam and 50% of due homeworks. um 75% of the tutorials and 50% of the lectur	es.	

Date 20.10.2021	Teacher's name and signature Conf.dr. R. Slobodeanu	Practicals/Tutorials instructor(s) name(s) and signature(s) Conf.dr. R. Slobodeanu
Date of approval 11.11.2021	Head of Department Lect. dr. Roxana Zus	

DI.111F.EN Classical Mechanics II

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics

1.3. Department	Department of Structure of the Matter, Earth and Atmospheric Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

	Classical Me	chanics I	Ι				
			Associate Profes	sor Că	tălin Berlic		
instru	ctor(s)		Associate Profes	sor Că	tălin Berlic		
	2.5. Semester		2.6. Type of		2.7.	Content 1)	DF
I		1	evaluation	Е	Classification	Type ²⁾	DI
	instru I	I Classical Me	I Classical Mechanics I I 2.5. Semester 1	Classical Mechanics II Associate Profestinstructor(s) I 2.5. Semester 2.6. Type of evaluation	Classical Mechanics IIAssociate Professor Căinstructor(s)Associate Professor CăI2.5. Semester2.6. Type of evaluationI1E	Classical Mechanics II Associate Professor Cătălin Berlic instructor(s) Associate Professor Cătălin Berlic I 2.5. Semester 2.6. Type of 2.7. I 1 evaluation E Classification Of course unit 0 0 0	Classical Mechanics II Associate Professor Cătălin Berlic instructor(s) Associate Professor Cătălin Berlic I 2.5. Semester 2.6. Type of evaluation 2.7. E Content ¹⁾ I 1 2.6. Type of evaluation 2.7. E Content ¹⁾

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

								-		
3.1. Hours per week in	3	distribution:	Lectures	1	Tutorials	1	Practicals	1	Project	-
3.2. Total hours per	40	distribution	Loctures	14	Tutoriale	11	Dracticale	14	Droject	
semester	42	uisuibuuon.	Lectures	14	Tutorials	14	Placticals	14	Project	-
3.3 Distribution of estimat	ed tin	ne for study								hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 20					20					
3.3.2. Research in library, study of electronic resources, field research					14					
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks					20					
3.3.4. Examination				4						
3.3.5. Other activities -					-					
3.4. Total hours of individual study 54										
3.5. Total hours per semester 100										
3.6. ECTS 4										

4. Prerequisites (if necessary)

4.1. curriculum	Attending the classes of Classical Mechanics I, Real Analysis, Algebra, Geometry and
	Differential Equations
4.2. competencies	Good level of understanding of algebraic calculus, elements of geometry, trigonometry and
	mathematical analysis. General physics knowledge.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia room (computer, video projector and projection screen)
5.2. for practicals/tutorials/projects	Laboratory with the necessary equipment for carrying out practical works.
	Computers, Video projector, software packages for data analysis and processing.

6. Specific competences acquired

<u>t</u> t	
Professional	Identification and proper use of the main laws, notions and principles specific to mechanics.
competencies	Solving classical mechanics exercises under imposed conditions.
	Carrying out mechanical experiments using standard laboratory equipment and evaluating the results
	based on theoretical models.
	Creative application of the knowledge acquired in order to understand and model the processes
	specific to classical mechanics.
	Communication and analysis of scientific information in the field of physics.
	Use of specific software packages for data analysis and processing.
Transversal	Efficient use of information sources and communication and training resources.
competencies	Carrying out professional tasks efficiently and responsibly in compliance with the legislation, ethics
	and deontology specific to the field, under qualified assistance.
	Applying efficient teamwork techniques, on various hierarchical levels.

7. Course objectives

7.1. General objective	Assimilation of concepts and laws specific to classical mechanics, development of
	students' ability to perform and interpret experimental works and problem solving specific
	to classical mechanics.
7.2. Specific objectives	- Analysis and modeling of mechanical movement;
	- Applied study from simple to complex following the specific conservation laws;
	- Applying the theoretical concepts in solving the problems of classical mechanics, as well
	as formulating rigorous and reasoned theoretical conclusions;
	- Designing and conducting experiments to verify the laws of classical mechanics;
	- Apply the accumulated notions in relation to the specific knowledge of other chapters of
	physics

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
1. Gravity. Kepler's laws. Newton's law of gravity. Gravitational acceleration. Variation of gravitational acceleration with height. Cosmic speeds. The gravitational field.	Systematic exposition - lecture, demonstration, discussion, case study. Examples	2 hours
2. Movement in the central force field. The problem of	Systematic exposition - lecture	
the two bodies. Speed and acceleration. The integral of	demonstration, discussion, case	2 hours
the kinetic moment. Integral energy. Orbits and	study. Examples	
3 Relative and absolute kinematics and dynamics of		
movements Absolute relative and transport motion	Systematic exposition - lecture	
Additions of displacements speeds and accelerations	demonstration discussion case	2 hours
Non-inertial reference frames. Complementary forces.	study. Examples	
Coriolis force. Applications.		
4. Mechanics of elastic body. Stresses and	Systematic expectition lecture	
deformations. Elongation of the bar. Hooke's law.	demonstration discussion case	2 hours
Transverse contraction. Compressibility. Shearing.	study. Examples	2 10015
Bending. Torsion.	F	
5. Fluid mechanics. Fluid statics. Hydrostatic pressure.	Systematic exposition - lecture.	
Pascal's law. Archimedes' law. Fluid dynamics.	demonstration, discussion, case	3 hours
Equation of continuity. The Bernoulli equation.	study. Examples	
Viscosity. Poiseuille's law. Stokes' law. Speed limit.		
6. Oscillations and waves. Simple harmonic oscillator.	Systematic exposition - lecture,	
motion Harmonic oscillator operate Propagation of a	demonstration, discussion, case	3 hours
disturbance. Elastic waves. Definitions. Example.	study. Examples	

Bibliography:

• A. Hristev, *Mecanică și acustică*, Editura Didactică și Pedagogică, București, 1984.

D. Kleppner, R. Kolenkow, *An Introduction to Mechanics*, 2nd edition, Cambridge University Press, 2013
 C. Kittel, W.D.Knight, M.A. Ruderman, *Cursul de Fizică Berkeley*, Volumul I, Mecanică, Ed. Didactică și

Pedagogică, București, 1981.

A.P. French, *Newtonian Mechanics (M.I.T. Introductory Physics)*, 1st. Edition, W. W. Norton & Company, 1971

• A.P. French, *Vibrations and Waves (M.I.T. Introductory Physics)*, Reprint Edition, W. W. Norton & Company, 1971

H. Goldstein, C. Poole, J. Safko, *Classical Mechanics*, 3rd Edition, Addison-Wesley, 2001.

• C. Berlic, *Note de curs* (pdf)

8.2. Tutorials	Teaching and learning techniques	Observations
The syllabus of the tutorials follows the content of the	Lecture, conversation, exercises,	14 ore
lecture. The subjects discussed aim a deep	problems	
understanding of the theoretical notions presented in the		
lecture, the development of calculation skills and the		
appropriate use of the fundamental concepts of Classical		

Mechanics.	
Bibliography	

Bibliography:

.

- A. Hristev, *Probleme rezolvate de mecanică și acustică*, Ed. APH, București, 1999.
 - V. Dima, E. Barna, Mecanică și acustică. Probleme rezolvate, Ed. Universității din București, 2006.

• C. Plăvițu, A. Hristev, L. Georgescu, D. Borşan, V. Dima, C. Stănescu, L. Ionescu, R. Moldovan, *Probleme de mecanică fizică și acustică*, Ed. Didactică și Pedagogică, București, 1981

8.3. Practicals	Teaching and learning techniques	Observations
Torsion of the rod	Guided practical activity	2 hours
The wind tunnel. Resistance forces	Guided practical activity	2 hours
The gyroscope.	Guided practical activity	2 hours
Coupled pendulums	Guided practical activity	2 hours
The surface of a rotating liquid	Guided practical activity	2 hours
Verification of Kepler's laws	Guided practical activity	2 hours
Laboratory exam	Exam	2 hours

Bibliography:

• C. Ciucu, Cristina Miron, V. Barna, *Lucrări practice. Mecanică Fizică și Acustică (I)*, Ed. Universității din București, București, 2009.

E. Barna, C. Ciucu, Cristina Miron, V. Barna, C. Berlic, *Lucrări practice. Mecanică Fizică și Acustică (II)*, Ed. Universității din București, București, 2010.

8.4. Project	Teaching and learning techniques	Observations
Bibliography:	•	·

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The syllabus is consistent with the content of similar courses taught at universities in the country (Babeş-Bolyai University of Cluj Napoca, "Alexandru Ioan Cuza" University of Iaşi, West University of Timisoara) and abroad (University of Groningen, Netherlands, The University of Chicago, USA, MIT, USA, Technical University Wien, Austria, etc.), providing students with the formation of skills and abilities to analyze physical phenomena specific to classical mechanics, to plan and conduct specific experiments and to identify applications, abilities and skills of interest to business company and research institutes with activity in the field of physics, as well as in college education.

10. Assessment

Activity type	10.1 Assessment criteria	10.2. Assessment	10.3. Weight in
		methods	final mark
10.4. Lecture	- Knowledge of the fundamental	1. Mid-term examination.	20%
	notions in Classical Mechanics;	Partial examination of	
	- Appropriate achievement and	theoretical knowledge -	
	correct understanding of the topics	written exam	
	lectured in the course;		
	- Demonstration of theoretical	2. Final examination.	20%
	concepts correctly using the calculus	Examination of theoretical	
	equations;	knowledge - written exam	
	- Clarity, coherence and conciseness		
	of the presentation;	For online assessment, the	
	- The correct use of the studied	subjects will be	
	physical models, formulas and	electronically sent via	
	calculus equations;	email / Google Classroom /	
	- Ability to exemplify;	Microsoft Teams, and during	
	- Ability to apply the acquired	the exam students will have	
	knowledge to solve mechanics	their video camera turned	
	exercises.	on, the exam being recorded.	
10.5.1. Tutorial	- Ability to solve classical mechanical	Homework	30%
	exercises.		
10.5.2. Practical	- Familiarity with specific	Colloquium examination	30%
	experimental techniques and		
	infrastructure of the laboratory;		

	- Applying specific methods of solving a given exercise;				
	- Interpretation of results.				
10.5.3. Project	-	-	-		
10.6. Minimal requirements for	or passing the exam				
- Obtaining a minimum grade	of 5 in each test.				
- Understanding the notions of trajectory, speed and acceleration					
- Knowledge and understanding of the Newton's laws					
- Knowledge of conservation theorems and laws for the mass point and the system of mass points.					
- Knowledge of the laws of collision.					
- Understanding the notion of moment of inertia					
- Calculation of moments of inertia for simple systems					
- Knowledge of equilibrium conditions for the rigid body					
Lessons attendance: at least 5	0% of the number of class hours and cor	npulsory attendance at all laborat	ory sessions.		

Date 14.10.2021	Teacher's name and signature Assoc. Prof. Catalin Berlic	Practicals/Tutorials instructor(s) name(s) and signature(s) Assoc. Prof. Catalin Berlic
--------------------	--	---

Date of approval 11.11.2021

Head of Department Prof.univ.dr. Alexandru JIPA

DI.112F.EN Molecular Physics and Heat II

1. Study program	1.	Study	program
------------------	----	-------	---------

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics,
	Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit tit	le	Molecular Physics and Heat II							
2.2. Teacher Conf. dr. Anca Dumitru									
2.3. Tutorials/Practicals instructor(s)			Conf. dr. Anca Dur	Conf. dr. Anca Dumitru					
2.4. Year of		2.5.		2.6	6. Type of		2.7. Type of	Content ¹⁾	DF
study	1	Semester	2	evaluation		E	course unit	Type ²⁾	DI

¹⁾ fundamental (DF), speciality (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in	3	distribution:	Lectures	1	Tutorials	1	Practicals	1	Project	
2.2. Total hours por										
5.2. Iotal nouis per	42	distribution:	Lectures	14	Tutorials	14	Practicals	14	Project	
semester									5	
3.3 Distribution of estimated time for study					hour					
					S					
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						20				
3.3.2. Research in library, study of electronic resources, field research					14					

3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks			20
3.3.4. Examination			4
3.3.5. Other activities			0
3.4. Total hours of individual study 54			
3.5. Total hours per semester 100			
3.6. ECTS 4			

4. Prerequisites (if necessary)

4.1. curriculum	some (preceding) courses
4.2. competences	some previously formed competences / Not applicable

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Amphitheater equipped with multimedia devices
5.2. for practicals/tutorials	Set of practical work illustrating the topics covered in the course; Consumables;
	Computers and software for data analysis

6. Specific competences acquired

Professional	C1 - Identification and proper use of the key laws and principles of molecular physics and heat in a
competences	given context.
	C2 – Solving problems of molecular physics and heat
	C3 - Apply the theoretical knowledge of molecular physics and heat to evaluate the experimental
	data obtained in the laboratory
	C4 – Communication, analysis and dissemination of scientific information
	C5 Interdisciplinary approach to physics topics.
Transversal	CT1- Efficient and responsible fulfillment of the professional duties, while respecting the
competences	deontological laws of the domain, under qualified supervision.
	CT2 - Effective use of information, communication and training assistance, both in Romanian and in
	a foreign language.

7. Course objectives

7.1. General objective	The assimilation of general framework of macroscopic and
	microscopic studies of thermal phenomena
7.2. Specific objectives	Knowledge and understanding
	- Using the thermodynamic potentials and their derivate (Maxwell relation) in order
	to determine the properties of the system
	-Correlation between thermodynamic potential and spontaneity of a process
	-Behavior of real gas; - Phase Transition, Phase equilibrium and phase diagram
	-Microscopic study of thermal phenomena: kinetic and statistical approaches
	-Description of the thermal phenomena using macroscopic or microscopic approach
	Explanation and interpretation
	Connection between the theoretical concepts defined in lecture and experimental
	investigation in practical work in the laboratory. The practical application of the
	general principles in solving the concrete problems.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
Method of thermodynamic potentials. Legendre Transformation. Entropy as characteristic function. Thermodynamic potentials: internal energy, enthalpy, Helmholtz free energy, Gibbs free enthalpy. Thermodynamic square. Applications of thermodynamic potentials. Spontaneity and Gibbs free enthalpy. Thermodynamic potentials for an open system. Chemical potential.	Systematic exposition - lecture. Conversation. Examples.	3 hours
The third law of thermodynamics.	Systematic exposition -	2 hours

Statement.Consequences. Equilibrium conditions for an isolated system. The principle of minimum of energy. Concept of phase. Phase Transition and chemical potential. Phase equilibrium and phase diagram. Gibbs phase rule. Clapeyron- Clausius Equation.	lecture. Conversation. Examples		
Van der Waals Equation of state. Critical temperature and associated constants. Compressibility Factor. Entropy and thermodynamic potential of van der Waals gas. Applications of van der Waals gas in isothermal and adiabatic process, Van der Waals gas equation for an adiabatic process. Carnot engine efficiency Relation between molar heat capacities of van der Waals gas.	Systematic exposition - lecture. Conversation. Examples. Problems.	2 hours	
Introduction on the kinetic molecular theory of ideal gases. Assumptions of kinetic theory. Relationship between pressure and molecular kinetic energy. Molecular interpretation of temperature. Theorem of equipartition of energy. Degree of freedom. Molar heat capacities (revised).	Systematic exposition - lecture. Conversation. Examples	2 hours	
Random variables. Mean and Standard deviation. Microstate, macrostate and multiplicity. Statistical view of Entropy. Boltzmann relation. Statistical versus thermodynamics definition of entropy.	Systematic exposition - lecture. Conversation. Examples	2 hours	
Introduction in statistical physics. Statistical distribution law by positions. Statistical distribution law by velocity vector. Maxwell Velocity Distribution. Mean Speed, Most Probable Speed and Root-Mean-Square Speed. Conversion of velocity distribution to energy distribution. Molecular collision. Mean free path. Effusion. Molecular current and flow. Transport phenomena: diffusion, viscosity and thermal conductivity.	Systematic exposition - lecture. Conversation. Examples. Problems	3 hours	
 Bibliography: V. Filip, Introductory Thermal Physics, Ed. Univ. Buc., 2006. Vlad Popa-Nita, Molecular physics(second part- Thermodynamics), Ed. Univ. Buc. (1994).M. W. S.Stefan, Fizica Moleculara, Ed. Univ. Bucuresti, 2006 C.N. Plavitu, Fizica Fenomenelor Termice, Partea I, Ed. Hyperion, 1992 S. Turns, Thermodynamics. Concepts and Applications. Ed. Cambridge University Press, 2006 W. Greiner, L. Neise, H. Stocker, Thermodynamics and Statistical Mechanics, Ed. Springer, 2006 S. Stefan si V. Filip, Fizica Fenomenelor Termice, Culegere de Probleme, Ed. Univ. Buc., 2002 			
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations	
The seminar follows the course content. The issues to be discussed are meant to provide the student with a better understanding of the application of theoretical concepts to solve problems or to evaluate the experimental data	Example. Problems. Guided work	10 hours	
Bibliography: Similar wit the lectrure bibliography			
8.3. Practicals [practical activities, projects, etc.]	Teaching and learning techniques	Observations	

 Determination of surface tension of a liquid/Determination of specific heat of a liquid by cooling method The viscosity of a liquid with Hoppler viscozimeter/Viscosity coefficient of air Verification of Stefan-Boltzmann's law of radiation Vapour pressure of water at high temperature Maxwellian velocity distribution 	Guided practical activity	10 hours
Laboratory examination	Reports of practical works and oral examination	4h
Bibliography: 1. Sabina Stefan (coordonator) Fizica moleculară –Lucrari 2. http://www.fizica.unibuc.ro/Fizica/Studenti/Cursuri/Mai	practice, Ed. Univ. Bucuresti. in.php	
8.4. Project [only if included in syllabus]	Teaching and learning techniques	Observations
Bibliography:		
whatever you decide to indicate		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit forms competences and abilities which are important for an undergraduate student in the field of modern Physics, corresponding to national and international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark	
10.4. Lecture	 coherence and clarity of exposition correct use of knowledge and theminology used in thermal physics ability to indicate/analyse specific examples correct use of equations/mathematical methods/physical models and theories 	Oral and written examination	50%	
10.5.1. Tutorials	- ability to use specific problem solving methods; - ability to analyse the results; - ability to present and discuss the results	Homework	20%	
10.5.2. Practicals	 ability to use specific experimental methods/apparatus ability to analyse and interpret the characterization data ability to present and discuss the results 	Examination of Lab reports	30%	
10.5.3. Project [only if included in syllabus]				
10.6. Minimal requirements for passing the exam Fulfillment of at least 50% of each of the criteria that determine the final grade.				
Requirements for mark 5 (10)	points scale)			

The obligation to perform 80% of laboratory work. To obtain minimum the mark 5 from evaluation criteria. Minimal knowledge of the theoretical concepts and of the practical works such as: thermodynamic potentials (U,F,G, and H), van der Waals equation of state (eq. of state, Internal energy and entropy); kinetic theory (assumption, average kinetic energy, kinetic interpretation of temperature , molecule velocity) and Maxwell Velocity Distribution (Mean Speed, Most Probable Speed and Root-Mean-Square Speed)

Date	Teacher's name and signature
8.11.2021	Conf dr. Anca Dumitru

Practicals/Tutorials instructor(s) name(s) and signature(s) Conf. dr. Anca Dumitru

Date of approval 11.11.2021

Head of Department Prof. dr. Alexandru Jipa

DI.113F.EN Electricity and Magnetism

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Electricity and Magnetism									
2.2. Teacher				Associate ProfessorVlad-Andrei ANTOHE					
2.3. Tutorials/Practicals instructor(s)				Lecturer Cezar Tazlăoanu					
2.4. Year of	1	2.5. Semester II	п	2.6	2.6. Type of		2.7. Type of	Content ¹⁾	DF
study				eva	aluation	E	course unit	Type ²⁾	DI

¹⁾ fundamental (DF), speciality (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFac)

8

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum		7 distribution: Lecture		Tutorials 1 / Practicals 3	4
3.2. Total hours per semester		distribution: Lecture	42	Tutorials 14 / Practicals 42	56
Distribution of estimated time for study hour					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					
3.2.2. Research in library, study of electronic resources, field research					
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					14
3.2.4. Examination					4
3.2.5. Other activities					6
3.3. Total hours of individual study	98				
3.4. Total hours per semester	200				

3.5. ECTS

4. Prerequisites (if necessary)

4.1. curriculum	Real and complex calculus; Algebra, geometry, and differential equations, Mechanics
4.2. competences	Identify and make appropriate use of main physical laws and principles in a given context.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (videoprojector, PC)
5.2. for practicals/tutorials	Experimental setups for carrying out basic and fundamental experiments on
electricity and magnetism

6. Specific competences acquired

	C1- Identify and make appropriate use of the main laws and principles of physics, in a given
Professional competences	 context. C1.3 – Understand how the main laws and principles in physics can be applied to solving simple theoretical and practical problems under qualified guidance. C2.3 - Make use of computers and data acquisition boards to control basic experiments or processes, and automation of experimental data collection. C4 – Carry out basic experiments in physics by using specific laboratory equipment
	 C5 – Analyze and communicate basic scientific, educational and popular information on physics.
Transversal	CT3- Efficient use of trusted sources of scientific information and proficient communication
competences	of scientific data in English

7. Course objectives

7.1 Conoral objective	Establish the grounding in electromagnetism in preparation for more advanced
7.1. General objective	courses
7.2. Specific objectives	 Understand the huge step of abstraction when switching from mechanical point of view with forces, to the concept of field, using specific examples of the gravitational, electric and magnetic fields, with some applications. Understand and analyze basic electric circuits Understand the close connection between electricity and magnetism, leading to the discovery of electromagnetic waves Knowledge and use of specific experimental methods connected to the study of electrical circuits and networks.

8.1. Lecture [chapters]	Teaching techniques	Observations
ELECTROSTATICS : Fundamental interactions. Associated forces and fields in nature. Relative strength of fundamental interactions. The modern concept of charge.	Systematic exposition - lecture. Examples.	1 hour
Electric charges. Conservation and quantization of charge. Consequences.	Systematic exposition - lecture. Examples.	1 hour
Coulomb's Law. The superposition principle.	Systematic exposition - lecture. Examples.	1 hour
The formalism of electrostatic field in vacuum. Electric field and electric potential. Properties.	Systematic exposition - lecture. Examples.	1 hour
Intensities and potentials. The superposition principle. Conservative nature of electrostatic field.	Systematic exposition - lecture. Examples.	1 hour
Point charge distributions and associated charge densities. Continuous charge distributions.	Systematic exposition - lecture. Examples.	2 hours
The moments of a charge distribution. The potential and the field of a dipole.	Systematic exposition - lecture. Examples.	1 hour
Gauss' law. Integral and in point forms of Gauss' Law. Laplace's and Poisson's equations. Consequences and applications.	Systematic exposition - lecture. Examples.	1 hour
Electrostatic energy of various systems of charges at rest. Electrostatic energy stored in electrostatic field. Meaning and consequences.	Systematic exposition - lecture. Examples.	1 hour
MATTER IN THE ELECTROSTATIC FIELD: The electrostatic field in matter. Ideal conductors and insulators under electrostatic field.	Systematic exposition - lecture. Examples.	1 hour
Electric displacement vector and electric polarization vector. Equations and properties.	Systematic exposition - lecture. Examples.	1 hour
Polarization of matter and electric permittivity.	Systematic exposition - lecture. Examples.	1hour
Capacitance and capacitors.		1 hour
STEADY STATE CURRENTS:	Systematic exposition - lecture.	2 hours

(DC) steady-state electrical currents. Current intensity and current density. Continuity equation.	Examples.	
Physics of conduction. Electric mobility and electric conductivity.	Systematic exposition - lecture. Examples. Lecture. Examples.	2 hours
Linear media and Ohm's Law. Electric resistance and resistors.	Systematic exposition - lecture. Examples. Lecture. Examples.	1 hour
Electromotive force and voltaic cells. Voltage sources and current sources. Principle of operation.	Systematic exposition - lecture. Examples. Lecture. Examples.	2 hours
STEADY STATE CURRENT CIRCUITS: Basic electric circuits. Kirchhoff's rules	Systematic exposition - lecture. Examples.	2 hours
Transient currents in RC circuits. Charging and discharging electric capacitors.	Systematic exposition - lecture. Examples.	1 hour
Power dissipation in electric circuits. Joule effect. In point Joule's Law.	Systematic exposition - lecture. Examples.	2 hours
MAGNETOSTATICS: Oersted discovery. The magnetic field due to DC steady-state currents. Lorentz force. Definition of magnetic flux density. Properties.	Systematic exposition - lecture. Examples.	2 hours
Biot-Savart Law. Integral and differential form of Ampere's Law. Magnetic forces on current carrying wires.	Systematic exposition - lecture. Examples.	2 hours
Vector potential and its properties.	Systematic exposition - lecture. Examples.	2 hours
Inductances, self-inductances, and mutual inductances. Magnetic moments.	Systematic exposition - lecture. Examples.	2 hours
Electromagnetic induction. Faraday's Law. Applications.	Systematic exposition - lecture. Examples.	2 hours
ALTERNATING CURRENT Alternating current (AC) circuits. Impedances and admittances. Resonance and physical meaning.	Systematic exposition - lecture. Examples.	2 hours
Power and energy in alternating-current Circuits.	Systematic exposition - lecture. Examples.	2 hours
Matter under magnetic field. Magnetic properties.	Systematic exposition - lecture. Examples.	2 hours
ELECTROMAGNETIC FIELD. MAXWELL EQUATIONS. ELECTROMAGNETI WAVES Electromagnetic waves and energy stored in electromagnetic field. Consequences.	Systematic exposition - lecture. Examples.	2 hours
 Recommended lectures: 1. Stefan ANTOHE, Electricitate şi Magnetism, Vol. I, Editura Univ 2. Stefan ANTOHE, Electricitate şi Magnetism, Vol. II, Editura Univ 3. Edward M. Purcell, Electricitate şi Magnetism, Berkeley Physics Bucuresti, 1982. 4. R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures 	ersității din București, 1999. versității din București, 2002. Course, Vol. II, Editura Didactica și l on Physics, Vol. 2, Addyson-Wesley	Pedagogică, , 1964.
6.2. Intorials [main memes]	Systematic exposition – and	Observations
systems of charges. Problems solving.	applications.	1 hour
Calculus of the electric field strength and potential for continuum charge distributions. Problems solving.	Systematic exposition – and applications.	1 hour
Gauss's Law. Applications to systems with high degree of symmetry. Problems solving.	Systematic exposition – and applications.	2 hours
Poisson and Laplace Equations. Applications to systems with high degree of symmetry. Problems solving.	Systematic exposition – and applications.	1 hour
Calculus of the dipole-dipole interactions. Problems solving.	Systematic exposition – and applications.	1 hour
Delta Y transformations for the equivalent resistance of a part of a complex DC network. Problems solving.	Systematic exposition – and applications.	1 hour
Calculus of the capacitance and potential coefficients. Problems solving.	Systematic exposition – and applications.	1 hour
Special methods for the steady state circuits analysis. Problems	Systematic exposition – and	2 hours

solving	applications.					
Applications of Biot-Savart-Laplace Law, Problems solving	Systematic exposition – and	1 hour				
	applications.					
Applications of the low of magnetic circuits. Problems solving	Systematic exposition – and	1 hour				
Special methods for the alternating current circuits analysis	Systematic exposition – and					
Problems solving	applications	2 hours				
83 Practicals [practical activities projects etc.]	Teaching and learning techniques	Observations				
Electrostatic interaction of point charges Coulomb's Law	Guided practical activity	1 hour				
Millikan experiment and charge quantization	Guided practical activity	2 hours				
Conductors at electrostatic equilibrium Charge vs potential	Guided practical activity	1 hour				
The electrostatic capacitance of parallel plate capacitors	Guided practical activity	2 hours				
Using voltmeters and ammeters in various configurations:						
unstream and downstream connections for measuring electrical	Guided practical activity	2 hours				
resistances.	Surded practical denvity	2 notito				
Measuring electrical resistances using Wheatstone Bridge and		_				
Kelvin method.	Guided practical activity	2 hours				
Measurement of electric resistivity for various metals: Al. Cu.	Guided practical activity	2 hours				
The effect of temperature on electrical resistivity of metals and						
semiconductors.	Guided practical activity	2 hours				
Potentiometric measurements: precise measurements of						
electromotive forces.	Guided practical activity	2 hours				
Thermoelectric effects (Peltier and Seebeck effects). Applications.	Guided practical activity	2 hours				
The narrow electron beam tube. Principle of oscilloscope						
operation.	Guided practical activity	2 hours				
Current-Voltage characteristics of a vacuum diode.	Guided practical activity	2 hours				
Current-Voltage characteristics of semiconductor diodes.	Guided practical activity	1 hour				
Biot-Savart Law. Measuring the magnetic density of flux of		2 h				
circular coils and solenoids.	Guided practical activity	2 nours				
Measurement of Earth's Magnetic Field.	Guided practical activity	2 hours				
Specific charge of the electron.	Guided practical activity	2 hours				
Magnetic moment in the magnetic field.	Guided practical activity	1 hour				
Ferromagnetic hysteresis.	Guided practical activity	1 hour				
The Hall Effect.	Guided practical activity	2 hours				
The Faraday's electromagnetic induction law.	Guided practical activity	1 hour				
The transient regime in RLC circuits. Damped oscillations.	Guided practical activity	1 hour				
Resonance phenomena in series and parallel AC circuits.	Guided practical activity	1 hour				
Coupled Oscillating Circuits.	Guided practical activity	1 hour				
The Ohm's laws for AC circuits.	Guided practical activity	1 hour				
Kirchhoff's laws for AC circuits.	Guided practical activity	1 hour				
Measurements with AC Wheatstone Bridge.	Guided practical activity	1 hour				
Power measurements in DC and AC circuits.	Guided practical activity	1 hour				
The power characteristics of a single-phase transformer.	Guided practical activity	1 hour				
Recommended lectures:						
1. I. Secăreanu, V. Ruxandra, M. Logofătu, S. Antohe, Electricitate și magnetism, Lucrări de laborator, Tipografia						
Universității din București, 1988.						
2. P. Cristea and S. Antohe, Experiments on electricity and magnetism (will be printed)						
8.4. Project [only if included in syllabus]	Teaching and learning techniques	Observations				
Bibliography:						

This course unit aims at developing specific theoretical, practical competences, and abilities in the field of electric phenomena and electromagnetism. The content corresponds to all national and European/international standards. The content of lectures and the teaching methods were carefully selected and framed after the content of similar lecture units in the general syllabus of known universities from Romania, European Union, and US top universities. All lectures and

the proposed experiments comply with the high standards requirements and expectations of our main employers of the graduates (industry, research – e.g. the National R&D Institute for Materials Physics, elementary and high school teaching).

10. Assessment

A crivity type	10.1 Accessment criteria	10.2 Accessment methods	10.3. Weight				
Activity type	10.1. Assessment cinteria	10.2. Assessment methods	in final mark				
10.4. Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyze specific examples 	Written test/oral examination	30%/30%				
10.5.2. Practicals	 ability to use specific experimental methods/apparatus ability to perform/design specific experiments ability to present and discuss the results 	Short lab written reports and practical examination	40%				
10.6. Minimal requirements for passing the exam							
All practical activities attended and completed.							
Requirements for mark 5 (10 points scale)							
- Carrying out all mandatory experiments and completing all of written short reports.							
- Correct answer to basic questions and knowledge of basic laws of electromagnetism.							

Date 10.11.2021	Teacher's name and signature Assoc. Prof. Ph.D. Eng. Vlad-Andrei ANTOHE	Practical instructor, name(s) and signature(s) Lecturer Ph.D. Cezar TAZLĂOANU
Date of approval 11.11.2021	Head of Assoc. Prof. Ph	Department, n.D. Adrian RADU

DI.114F.EN Processing of Physical Data and Numerical Methods

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma, Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Processing o	Processing of Physical Data and Numerical Methods						
2.2. Teacher Lect.dr. Roxana ZUS									
2.3. Tutorials/Practicals instructor(s) Lect.dr. Roz				Lect.dr. Roxana	ZUS	_	_		
2.4. Year of study		2.5. Semester		2.6. Type of		2.7. Type of	Content ¹⁾	DS	
	1		II	evaluation	C	course unit	Type ³⁾	DFac	
							-5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	ue	

3. Total estimated time (hours/semester)

3.1. Hours per week	2	distribution:	Lecture	1	Tutorials	Practicals	1	Project	
3.2. Total hours per	28	distribution	Lecture	14	Tutorials	Practicals	14	Project	
semester	20	distribution.	Lecture	17	1 dtoridi5	i fucticuis	17	ilojeet	

3.3 Distribution of estimated time for study				
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			15	
3.3.2. Research in library, study of electronic resources, field research			10	
3.3.3. Preparation for practicals/tutorials/projects/reports/homework			18	
3.3.4. Examination				
3.3.5. Other activities				
3.4. Total hours of individual study	43			

3.5. Total hours per semester752.6. ECTS2	3.4. Total hours of individual study	43
	3.5. Total hours per semester	75
5.0. EC15 5	3.6. ECTS	3

4. Prerequisites (if necessary)

4.1. curriculum	Programming Languages, Algebra, Analysis, Differential Equations
4.2. competences	Knowledge of programming, linear algebra, analysis, differential equations

5. Conditions/Infrastructure (if necessary)				
5.1. for lecture	Computer, Video projector			
	Lecture notes			
	Bibliography			
5.2. for practicals/tutorials	Computer network			
	Lecture notes			
	Bibliography			

6. Specific competences acquired

Professional competences	 Identifying and using the right physical laws and principles in given conditions Using of dedicated software for data analysis and processing. Solving physics problems in given conditions, using numerical and statistical methods.
Transversal competences	 Performing professional tasks in an efficient and responsible manner in compliance with the legislation and deontology specific to the field under qualified assistance. Effective use of information sources, communication and training resources in a foreign language.

7. Course objectives

7.1. General objective	Learning techniques of numerical simulation for solving of problems and data analysis
7.2. Specific objectives	 Understanding specific problematic and correlation between analytic and applicative aspects; Developing abilities for numerical simulation; Developing abilities for adapting numerical algorithms to physics problems; Developing abilities for data analysis and interpretation from numerical estimations and to formulate rigorous theoretical conclusions.

8.1. Lecture [chapters]	Teaching techniques	Observations
1. Solution of Linear Algebraic Equations		
Direct Methods: Gaussian Elimination, LU	Systematic exposition -	
decomposition	lecture. Critical analysis.	3 hours
Iterative Methods: Jacobi, Gauss-Seidel, Singular value	Examples	
decomposition		
2. Non-linear Equations and Roots of Polynomials	Systematic exposition -	3 hours
Fixed point method, Bisection method, Newton-	lecture. Critical analysis.	
Raphson method, False Positon Method	Examples	
Secant Method, Laguerre's method of calculating		
polynomial roots		
3. Function approximation	Systematic exposition -	3 hours
Polynomial interpolation: Lagrange, Newton	lecture. Critical analysis.	
Continuous least squares approximation (orthogonal	Examples	

polynomials, trigonometric polynomials)		
Discrete least squares approximation (least squares		
approximations, discrete orthogonal polynomials,		
Chebyshev)		
4. Numerical Evaluation of Derivatives and integrals	Systematic exposition -	3 hours
Direct derivation. Derivation by interpolation. Classical	lecture. Critical analysis.	
formulas (the rectangle method, the trapezoidal method,	Examples	
Simpson method etc)		
Gauss Integration (Legendre, Hermite, Laguerre,		
Chebyshev)		
Monte-Carlo methods		
6. Numerical Solution of Ordinary Differential	Systematic exposition -	2 hours
Equations	lecture. Critical analysis.	
Direct Methods for Initial Value Problems	Examples	
Euler's Method of order I		
Euler's Method of order II		
Runge-Kutta Methods		
Bibliography:		
-K. Atkinson, "An Introduction to Numerical Analysis",	2nd ed., John WileyPub., 1989	
- William H. Press, Saul A. Teukolsky, William T. Vetter	ing, Brian P. Flannery, "Numeri	cal Recipes: The Art of
Scientific Computing", 3rd ed., Cambridge University Pres	s, 2007	
- R. Burden, J. D. Faires, "Numerical Analysis", Thomso	n Brooks/Cole, 2010	
- George W. Collins, "Fundamental Methods and Data A	nalysis", 2003	
- Morten Hjorth-Jensen , "Computational Physics", Univ	ersity of Oslo, 2006	
- C.Brebente, S.Mitran, S.Zancu, "Metode Numerice", Ec	l.Tehnică, 1997	
- Roxana Zus, <i>Lecture notes</i> (pdf)	1	1
8.2. Tutorials [main themes]	Teaching and learning	Observations
	techniques	
	1	1
8.3 Practicals [practical activities projects etc.]	Teaching and learning	Observations
olor i racticalo (practical activitico, projecto, etc.)	techniques	
Environment for programming the numerical methods	Systematic exposition.	
exposed in the lecture	Heuristic conversation.	1 hour
	Guided practical activity	
Programming the methods for solving linear algebraic	Guided practical activity	3 hours
equations. Applications in physics.		
Programming the methods for solving non-linear		
equations and finding roots of polynomials. Applications	Guided practical activity	3 hours
in physics.		
Interpolation and extrapolation of data points. Function	Guided practical activity	2 hours
approximation.		
Numerical derivation.	Guided practical activity	1 hour
Programming the methods for numerical solution of	Guided practical activity	2 hours
integrals. Applications in physics.		
Programming the methods for numerical solution of	Guided practical activity	2 hours
ordinary differential equations. Applications in physics.		
Bibliography:		
- William H. Press, Saul A. Teukolsky, William T. Vetter	ing, Brian P. Flannery, "Numeri	cal Recipes: The Art of
Scientific Computing", 3rd ed., Cambridge University Pres	s, 2007	
- R. Burden, J. D. Faires, "Numerical Analysis", Thomso	n Brooks/Cole, 2010	
- George W. Collins , "Fundamental Methods and Data A	nalysis", 2003	
- Morten Hjorth-Jensen , "Computational Physics", Univ	ersity of Oslo, 2006	
- Roxana Zus, Adrian Stoica, laboratory notes in electron	IC format	1
8.4. Project [only if included in syllabus]	Teaching and learning	Observations
	techniques	
Bibliography:		

For the elaboration of the contents, of the teaching and learning methods, the teachers have consulted the corresponding lectures from national and international universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark			
10.4. Lecture	The understanding and correct use of	Written test (final	30%			
	the theoretical knowledge, clarity of	examination)	20%			
	exposition, logical coherence	Homework during the				
		lecture				
10.5.1. Tutorials						
10.5.2. Practicals	 ability to apply specific methods for a given problem ability to present and discuss the results 	Evaluation through individual homework at the end of the semester	50%			
10.5.3. Project [only if						
included in syllabus]						
10.6. Minimal requirements for	or passing the exam					
Frequency: 50% lecture attendance and attendance to all tutorials and practicals						
Requirements for mark 5 (10 points scale)						

Correct exposition of 50% from the theoretical topics at the final exam. Correct numerical solution of one problem at the final exam.

Date 04.11.2021

Teacher's name and signature Lect.dr. Roxana ZUS

Practicals/Tutorials instructor(s) name(s) and signature(s) Lect.dr. Roxana ZUS

Date of approval 11.11.2021

Head of Department Lect.dr. Roxana ZUS

DI.115F.EN Scientific English II

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Foreign Languages and Literatures
1.3. Department	Department of Modern Languages
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Scientific En	Scientific English II					
2.2. Teacher			Lecturer Monica Oanca, PhD					
2.3. Tutorials/Practicals instructor(s)			-					
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DC
	Ι		II	evaluation	С	Classification	Type ²⁾	DI
						of course unit	51	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	1	distribution:	Lectures	-	Tutorials	1	Practicals	-	Project	-
3.2. Total hours per semester	14	distribution:	Lectures	-	Tutorials	14	Practicals	-	Project	-
3.3 Distribution of estimated time for study										
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 2							2			
3.3.2. Research in library, study of electronic resources, field research						3				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks						2				
3.3.4. Examination 4						4				
3.3.5. Other activities -						-				
3.4. Total hours of individual study 7										
3.5. Total hours per semester 25										
3.6. ECTS 1										

4. Prerequisites (if necessary)

4.1. curriculum	A good command of English – level B2
4.2. competencies	-

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	-
5.2. for tutorials/projects	If the seminar takes place in a classroom, a blackboard and a video projector are
	required
	The seminar can be held online, and each student is responsible for making sure
	that he/she has a microphone. It is advisable to turn the camera on during the
	seminar.

6. Specific competences acquired

The provide state of the provi	
Professional	1. Defining and describing the main notions of grammar and vocabulary
competencies	2. Defining the five specific competencies:
	Understand a written text
	Understanding a listened message
	Conducting a conversation
	Delivering an oral presentation of a topic
	Writing compositions
Transversal competencies	 Develop the reading skills in English to read texts needed for Physics classes and seminars Writing a project on a physics topic that will be presented orally in front of the classmates Write an essay on a Physics related topic

7. Course objectives

7.1. General objective	Understanding and using the specialized vocabulary necessary for reading texts and then
	elaborating essays on Physics related topics.
7.2. Specific objectives	1. Knowledge and understanding (knowledge and proper use of vocabulary related to Physics)
	Revise general knowledge of English and apply it to comprehension in Physics-related texts as
	mentioned in the seminar topics
	2. Explanation and interpretation (explaining and interpreting some ideas, projects, processes,
	as well as the theoretical and practical contents of the discipline)
	Specialized expressions will be explained and commented upon; their use in the specific
	context of the English language will be emphasised. Some physics concepts will be translated
	and the difference between English and Romanian will be analysed. False friends, as well as
	structures that appear only in English will be mentioned.
	3. Instrumental - applications (design, management and evaluation of specific practical
	activities; use of methods, techniques and tools for investigation and application).
	Students will use their computers to design PowerPoint presentations, as well as other tools to
	write their projects.
	4. Attitudinal (manifestation of a positive and responsible attitude towards the scientific field /
	cultivation of a scientific environment focused on democratic values and relations / promotion
	of a system of cultural, moral and civic values / optimal and creative capitalization of one's

own potential in activities)
Students will develop the ability to use English texts for writing a seminar paper in English for
one of the specialized seminars (in the field of physics). During the seminar the stress will be
on originality and correct citation of sources.
Students will be advised to assume their responsibility for their work and they will be taught to
engage in various projects and in partnership with other specialists
Teamwork – collaboration is encouraged, but provided that each participant has a well-defined
contribution.

8. Contents

8.2. Tu	torials	Teaching and learning techniques	Observations
•	Science and Technology	In all seminars students will	All seminars will use
•	Physics: A Window on the Universe	interact with one another and will	specialized texts written
•	How to do an experiment	have to solve vocabulary	by native speakers
•	Expectations and results	exercises and repeat grammar	(excerpts from books,
•	If- clauses	structures.	magazines, etc.),
•	Intuition – a necessary quality for a researcher	Texts related to the proposed	vocabulary and
•	Time- clauses	topics will be discussed and	grammar exercises, as
•	The ecological crisis	comprehension exercises will be	well as recordings of
 Fighting against Pollution 		done. Conversations on these	native English speakers.
•	Wind Power Energy	topics will be initiated, and	
•	Verb followed by ing – form or to-infinitiv	listening exercises will be	
12. The advantages of living in the city versus the		Conducted, too.	
countryside		Students will give PowerPoint	
 Global issues 		ope of the subjects studied	
14. Students' projects			
Dibling			

Bibliography:

McCarthy Michael, Felicity O' Dell, English Vocabulary in Use, (Upper Intermediate and Advanced), Cambridge University Press, 2002, 2005.

McCarthy Michael, Felicity O' Dell, Test your English Vocabulary in Use, (Upper Intermediate and Advanced), Cambridge University Press, 2002, 2005

Dearholt, Jim, Career Paths, Mechanics, Express Publishing, 2012

Virginia Evans, Jenny Dooley, Upstream Intermediate, Express Publishing, 2015.

Jan Bell Roger Gower, Advanced Expert, Coursebook, Pearson, 2017.

P. Frauenfelder and P. Huber, Introduction to Physics, Translated by F. S. Levin and J. L. Weil, Pergamon Press, 1978.

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The seminars follow the format of the foreign language seminars within the University of Bucharest and are in accordance with the international standards regarding the level of linguistic competences.

10. Assessment

Activity type	10.1 Assessment criteria	10.2. Assessment	10.3. Weight in		
Activity type	10.1.715555511011 0110114	methods	final mark		
10.5.1. Tutorial	The ability to understand and use	Evaluation by written tests	40%		
	correctly the vocabulary discussed	Evaluation by oral tests	40%		
	during the seminars	portfolio	20%		
10.6. Minimal requirements for	or passing the exam				
- correct acquisition of level B	- correct acquisition of level B2 of English,				
- correct use of the main notions of grammar					
- correct use of specialized terms					
- solving all the classwork posted on Google Classroom					

Date 10.11.2021

Teacher's name and signature Lecturer Monica Oanca, PhD Practicals/Tutorials instructor(s) name(s) and signature(s)

DI.116F.EN Physical Education and Sport II

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	-
1.3. Department	Department of Physical Education and Sports
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Physical Education and			nd Sport II					
2.2. Teacher		·						
2.3. Tutorials/Practicals instructor(s)		Lector uni	Lector univ dr.Cătălin Şerban					
2.4. Year of study		2.5. Semester		2.6. Type		2.7.	Content 1)	DC
	Ι		II	of	V	Classification	Trupe ²	ח
				evaluation		of course unit	Type 7	DI
1) for denoted (DE) and delta (DC) considered (DC). 2) considered (DI) all attice (DO) continued (D($c_{1})$)								

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	1	distribution:	Lectures	0	Tutorials	0	Practicals	0	Proje ct	0
3.2. Total hours per semester	14	distribution:	Lectures	0	Tutorials	0	Practicals	14	Proje ct	0
3.3 Distribution of estimat	ed tin	ie for study							ci	hours
3.3.1. Learning by using o	ne's o	wn course notes	s, manuals, l	lecture	notes, biblio	graph	ıy			0
3.3.2. Research in library, study of electronic resources, field research 0					0					
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks					0					
3.3.4. Examination 4						4				
3.3.5. Other activities 7					7					
3.4. Total hours of individual study 7										
3.5. Total hours per semester 25										
3.6. ECTS 1										

4. Prerequisites (if necessary)

In Freiequisites (in nee	(coord)
4.1. curriculum	-
4.2. competencies	-

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	-
5.2. for practicals/tutorials/projects	-

6. Specific competences acquired

Professional	 Knowledge and understanding.
competencies	-To acquire general knowledge about physical education and highlighting its specific content
	-To gain knowledge about the effects of motor activities on the body;
	To accumulate notions regarding the particularities of the physical education lesson at the level of
	non-profile higher education;
	-To apply the formative knowledge, in the field of physical education and sports, at the level of daily
	activities.

	Explanation and interpretation
	-To establish the objectives and tasks specific to the activities carried out;
	-To develop the capacity to practice systematic and independent physical exercises;
	-To capitalize on communication in sports as a way of social integration;
	-To develop the ability to understand, operate and expand motor activity in free time and recreation;
	-To develop the ability to capitalize on the positive effects of physical education on personality and
	quality of life;
	 Instrumental – applications
	-To design and apply exercise programs adapted to the objectives of the activity carried out;
	-To coordinate, integrate and participate in sports activities;
	-To identify solutions regarding the optimization of free time;
	-To mobilize human resources in volunteer actions;
	-To know the evaluation methods specific to physical education.
Transversal	-To integrate and participate in sports activities promoting the values of fair play;
competencies	-To develop principled and constructive relationships with the social partners;
	-To adapt, in optimal conditions and in an efficient way, to new situations;
	-To develop pro-active attitudes, positive thinking and interpersonal relationships;
	- To be aware of the importance of exercising on maintaining an optimal state of health, increasing
	the body's endurance and increasing the capacity for physical and intellectual work.

7. Course objectives

7.1. General objective	To be aware of the importance of exercising on maintaining an optimal state of health, increasing the body's endurance and increasing the capacity for physical and intellectual work
7.2. Specific objectives	 Maintaining an optimal state of health of students and improving the resistance of their body to the action of environmental factors and the specifics of professional activity; Ensuring superior indices of correct and harmonious physical development of the body; Improving skills, motor skills and knowledge on the practice of a sport; Cultivating the skills and habits of students to practice independently, in their free time, exercises and sports for corrective, fortifying, recreational or compensatory purposes; Engaging the mass of students in the systematic activity of practicing physical exercises, tourism and sports; Improving moral-volitional and intellectual qualities and traits, aesthetic sense and social responsibility

8.1. Lectures [chapters]	Teaching techniques	Observations
Bibliography:		
8.2. Tutorials	Teaching and learning techniques	Observations
Bibliography:		
8.3. Practicals	Teaching and learning	Observations
Numbei of hours -14	techniques	Observations
Introductory lesson – 1h	Audiovisual techniques (Power	Practical work
Initial verification -1h	Point presentation, teaching film	
Consolidation the technique – aerobic gymnastics and	presentation, audio material	
fitness – 3h	presentation)	
Consolidation main tehnical elements with the ball		
(volleyball handball) – 4h		

Acquiring yhe main collective tactical action of attack				
end defense (volleyball handball) – 3h				
Intermediate verification- 2h				
Bibliography:				
 Bibliografie Obligatorie: 				
Ganciu, M., (coord), colectiv DEFS, 2013, Curs of	le educație fizică pentru studenții Un	iversității din București,		
Editura Universității din București, București				
 Ganciu, M., Aducovschi, D., Gozu, B., Stoica, A. 	M., Stoicoviciu, A., Gulap, M., Cristo	ea, M., 2010, Activitatea		
fizică independentă și valorificarea prin mișcare a timpulu	<i>ii liber – Vol.I</i> , Editura Universității d	lin București, București		
Stoica, A., 2011, Curs practic de gimnastică aerobică pen	tru studenții din Universitatea din Bu	curești. Editura		
Universității din București	Universității din București			
 Bibliografie facultativă: 				
 Colectivul DEFS, coord. Aducovschi D.,2008, Siz 	Colectivul DEFS, coord. Aducovschi D.,2008, Sistemul de evaluare la educație fizică – pe discipline sportive –			
în Universitatea din Bucuresti, Editura Universității din Bu	în Universitatea din Bucuresti, Editura Universității din București			
 Colectivul DEFS, 2005, Designul instrucţional în 	• Colectivul DEFS, 2005, Designul instructional în optimizarea instruirii echipelor reprezentative ale			
Universității din București, Editura Universității din Bucur	rești			
C. Alte surse utile				
DVD-uri, internet				
8.4. Project	Teaching and learning	Observations		
	techniques			
Bibliography:				

Physical education is a social activity with special contributions to the social-professional integration of young people. The formative function of physical education will contribute to the development of these qualities and abilities, which will allow the future specialist to acquire the chosen profession as quickly and better as possible, to practice it with high efficiency, to be able to engage in various social activities. to be able to act independently and creatively on the environment and on his own person.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture			
10.5.1. Tutorial			
10.5.2. Practical	- interest in the discipline through systematic - participation in practical lessons (1h / week)		60%
	- initial and intermediate testing by control tests and trials	individual assessment	30%
	- participation in sports competitions		10%
10.5.3. Project			
10.6. Minimal requirements for passing the exam participation in 50% of the total number of lessons 			

• passing motor tests

• participation in a sports competition

• to prove the minimum acquisition of the general notions of physical education and sports

Date 10.11.2021

Teacher's name and signature

Date of approval 11.11.2021

name(s) and signature(s) Lector univ dr.Cătălin Șerban Head of Department

Practicals/Tutorials instructor(s)

Head of Department Prof. Stoica Alina, PhD

DI 201F.EN Optics

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma, Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Optics	Optics						
2.2. Teacher			С	Conf. Dr. Mircea BULINSKI, Lect. Dr. Ing. Ovidiu Toma					
				С	onf. Dr. Mircea BU	LINSF	KI, Lect. Dr. Ing. C	Ovidiu Toma	
2.3. Tutorials/Practicals instructor(s)				Conf. Dr. Mircea BULINSKI, Lect. Dr. Ing. Ovidiu Toma					
				С	onf. Dr. Mircea BU	LINSF	KI, Lect. Dr. Ing. C	Ovidiu Toma	
2.4. Year of study		2.5. Semester			2.6. Type of		2.7.	Content ¹⁾	DF
_	2		Ι		evaluation	Е	Classification	Tupo ²⁾	DI
							of course unit	Type	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	7	distribution:	Lectures	3]	1	Practicals	3	Project	-
3.2. Total hours per semester	98	distribution:	Lectures	42	1	14	Practicals	42	Project	-
3.3 Distribution of estimat	ed tim	ne for study			U	1			•	hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 38					38					
3.3.2. Research in library, study of electronic resources, field research 2					25					
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks 3					35					
3.3.4. Examination 4					4					
3.3.5. Other activities X					Х					
3.4. Total hours of individual study 98										
3.5. Total hours per semester 200										

4. Prerequisites (if necessary)

3.6. ECTS

4.1. curriculum	Geometry, Trigonometry, Mathematical analysis, Classic mechanics, Equations of mathematical
	physics, Electricity
4.2. competencies	Knowledge of the trigonometrical functions and relations.
	Knowledge and use of the harmonic oscillator equations and the mechanical waves equations.
	Capability of mathematical (computational) modelling of oscillating phenomenon.

8

5. Conditions/Infrastructure (if necessary)

5.1 for lecture	Multimedia equipped class (videoprojector) Lecture notes
5.1. IOI ICCIUIC	Winterine equipped class (videoprojector) Lecture notes
	Recommended bibliography
5.2. for practicals/tutorials/projects	

Laboratory of optics with experimental works of geometrical optics,
photometry, interference, diffraction, polarization, thermal radiation.

6. Specific competences acquired

or opecific compete	inces acquirea
Professional	C1 - Identification and appropriate use of main laws and principles of physics in a given context.
competencies	C3 - Solving problems of physics in imposed conditions, using numerical and statistical methods
	C4 – Applying knowledges from the field of physics both in concrete situations from related fields, as
	well as in some experiments, using the standard laboratory equipment.
	C5 - Communication and analysis of information with didactic, scientific and popularization
	character in the field of Physics.
Transversal	CT1 – Achievement of professional tasks in efficient and responsible way with the compliance of
competencies	ethics legislation specific to the field, under qualified assistance.
	CT2 - Application of efficient working techniques in multidisciplinary team on different hierarchical
	levels.
	CT3 - Efficient use of information sources and of resources of communication and formation in a
	foreign language.

7. Course objectives

7.1. General objective	Knowing the laws and principles of light propagation, notions of geometrical optics image formation and understanding of optical instruments. Knowledge of fundamental phenomena in physical optics (wave-particle duality, interference, diffraction, polarization, emission and light detection) and understanding the functioning of simple optical devices based on these phenomena.
7.2. Specific objectives	Objective 1: Fundamental knowledge. Students will be competent in physical phenomena, mathematics and computing applications from physical optics, such that to allow them to approach optics problems from conceptual, analitical, numerical, and experimental point of view. Objective 2: Applicative. Students will gain skills related to optical techniques and an understanding of abilities necessary to adapt at the scientifical challenges of the future. Objective 3: Design and development. Students will be capable to solve problems of optics in a multidisciplinary environment, of team. Objective 4: Communication. Students will be capable to communicate scientific information orally, written and in graphic form. Objective 5: Behavioral. Students will act ethical and will appreciate the impact of optics on society, economy and environment.

8.1. Lectures [chapters]	Teaching techniques	Observations
Evolution of optics knowledge. Induction and deduction	Systematic exposition -	3 hours
in knowledge. FOUNDAMENTALS OF	lecture. Heuristic conversation.	
GEOMETRICAL OPTICS - Eikonal equation;	Critical analysis. Examples.	
Lagrange's integral invariant; The principle of Fermat;		
LAGRANGIAN FORMULATION OF OPTICS - Ray		
equation		
LAWS AND PRINCIPLES OF GEOMETRICAL	Systematic exposition - lecture.	
OPTICS - Law of reflection; Law of refraction; Total	Heuristic conversation.	3 hours
reflection; Laws and principles of geometrical optics	Experiment. Examples.	
APPLICATIONS OF TOTAL REFLECTION -		
Evanescent waves; Guided waves, optical waveguide,		
end coupling, guided modes; Total reflection prisms		
LIGHT RAYS AND IMAGINES - Graphical ray-trace	Systematic exposition - lecture.	
method; PLANE SURFACES - Plane mirror; Plane-	Heuristic conversation. Critical	
parallel plate; Prism	analysis. Examples.	3 hours
SPHERICAL SURFACES- Parabolic mirrors; Spherical		
mirrors; Mirror aberrations; Spherical transmission		
surfaces (diopters)		

THIN LENSES - Types of lenses; Graphical ray-trace method; Lens makers' formula; Conjugate point formula; Cardinal points LINEAR SISTEMS- Point Spread Function; Optical Transfer Function	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples.	3 hours
OPTICAL ABERRATIONS - Geometric aberrations of point images MATRIX FORMULATION OF GEOMETRICAL OPTICS - Basic formula; Spherical surfaces; Thick lens; Optical systems	Systematic exposition - lecture. Heuristic conversation. Examples.	3 hours
IDEAL OPTICAL SYSTEMS - Fundamental relations for ideal systems OPTICAL INSTRUMENTS - Basic characteristics; Fundamental optical instruments: Magnifying glass: Optical microscope; Refracting telescope; Photo camera; Human eye	Systematic exposition - lecture. Heuristic conversation. Examples.	3 hours
PHOTOMETRY- Physical quantities, measurements and units of measure; Reflection, transmission and absorption coefficients. COLORIMETRY - CIE standard; Additive color model; Subtractive color model; Color space, additive color mixing	Systematic exposition - lecture. Examples.	3 hours
Light as electromagnetic wave. Maxwell equations in optical media. Wave equation. Plane waves and spherical waves.	Systematic exposition - lecture. Heuristic conversation. Modelling (TIC). Case studies. Examples	2 hours
Phase speed and group speed. Rayleigh relation. Theory of light dispersion. Complex refractive index. Optical constants (refractive index and extinction coefficient).	Systematic exposition - lecture. Heuristic conversation. Modelling (TIC). Case studies. Examples	2 hours
Light interference. Coherent waves. Young double slit experiment. Interfringe calculus. Interference in white light. Interference by wave-front division. Young- Fresnel devices.	Systematic exposition - lecture. Heuristic conversation. Modelling (TIC). Examples	2 hours
Interference by amplitude division. Interference devices. Fringes classification (equal thickness, equal inclination). Newton rings. Two beams interferometry. Michelson interferometer.	Systematic exposition - lecture. Heuristic conversation. Modelling (TIC). Examples	3 hours
Light diffraction. Fresnel diffraction (divergent light). Fresnel zones. Fraunhofer diffraction (parallel light) on filiform slit, circular slit, double slit and plane diffraction gratings. Resolution of optical instruments (Abbe's relation).	Systematic exposition - lecture. Heuristic conversation. Critical analyzes. Examples	5 hours
Light polarization. Light polarization by reflection and refraction. Malus and Brewster experiments. Light polarization by double refraction (birefringence). Polarizing prisms. Light polarization by dichroism and light scattering.	Systematic exposition - lecture. Heuristic conversation. Modelling (TIC). Critical analyzes. Examples	3 hours
Elliptically polarized light (interference in polarized light). Artificial birefringence. Optical activity (rotatory polarization) in optical media (solids and liquids). Light propagation in isotropic media. Fresnel relations.	Systematic exposition - lecture. Heuristic conversation. Modelling (TIC). Critical analyzes. Examples	3 hours
Thermal radiation. Photometric study of black-body as a Lambert surface. Deduction of Wien displacement law and Stefan- Boltzmann law.	Systematic exposition - lecture. Heuristic conversation. Modelling (TIC). Critical analyzes. Examples	1 hour

Bibliography:

Geometrical Optics, Mircea Bulinski, Editura Universitatii Bucuresti (2014);

I.I. Popescu, "Optica geometrica" Vol. I Tipografia Universitatii din Bucuresti (1988). St.Levai, M.Bulinski, O.Toma, "Optica", Editura Universitatii din Bucuresti (2005)

Iulian Ionita – Optica ondulatorie, http://www.fizica.unibuc.ro/Fizica/Studenti/Cursuri/Main.php-

F. Pedrotti, L. Pedrotti, Introduction to Optics, Prentice H.	all, New Jersey, 1993	
E. Hecht, Optics, Addison-Wesley, 2002		
M. Born, E.Wolf, "Principles of Optics", Cambridge Univ	versity Press (1998)	
M. Giurgea, L.Nasta, Optica Editura Academiei Române,	Bucuresti, 1998.	
G. Brătescu, Optica, Editura Didactica și Pedagogica, Buc	curesti, 1982	
I. Iova, Elemente de optica aplicata, Editura stiintifica si e	enciclopedica, București, 1977	
8.2. Tutorials	Teaching and learning	Observations
	techniques	
Centered optical systems. Exercises and problems.	Tutorials	3 hours
Photometry and radiometry. Exercises and problems.	Tutorials	2 hours
Optical instruments. Exercises and problems.	Tutorials	2 hours
Interference of light. Exercises and problems.	Tutorials	3 hours
Diffraction of light. Exercises and problems.	Tutorials	2 hours
Polarization of light. Exercises and problems.	Tutorials	2 hours
Ovidiu Toma, Doina Bejan, Marian Băzăvan, Iulian Ioniță Exercises and Problems" Editura Universitatii Bucuresti (á, Mircea Bulinski, "Geometrical Op 2021);	tics, Practical Works,
D.Bejan, M.Bazavan, I.Ionita, O.Toma, M.Bulinski, I.Gru	iia, "Lucrari practice de optica geom	etrica", Editura
Universitatii din Bucuresti (2013).		
D Bejan, M. Bazavan, I. Ionita, O. Toma - Lucrari Practic	e de Optica Ondulatorie, Ed. Unibuc	. Buc, Bucuresti, 2013.
St.Levai, A.Ioan, L.Nasta, Optica. Exercitii si probleme, I	Traching and lagrants	(1984)
8.3. Practicals	techniques	Observations
Reflection and refraction laws.	Guided practical activity	2 hours
Measurement of focal distance at converging lenses,	Guided practical activity	4 hours
diverging lense and concave mirrors.		
The determination of cardinal elements of centered optical systems.	Guided practical activity	2 hours
Spherical aberration. Measurement of focal distance at a lens with high convergence.	Guided practical activity	2 hours
The study of optical prism; measurement of refractive		
index by minimum deviation method.	Guided practical activity	2 hours
Measurement of the refractive index at liquids	Guided practical activity	2 hours
with Abbe refractometer.		
Laws of photometry. Measurement of integral light flux	Guided practical activity	3 hours
of a light source using Ulbricht integrating sphere.		
Determination of transmission curve with Pulfrich	Guided practical activity	2 hours
spectrophotometer.		
Optical microscope – measurement of angular		
Magnification (grosisment). Refracting telescope –	Guided practical activity	2 hours
measurement of grosisment.		
double long. Freshel devices (Billet	Guided practical activity	3 hours
Michelson interforometer	Guided practical activity	2 hours
Diffraction on filiform slit Experimental verification of	Guided practical activity	2 hours
Fraunhofer intensity distribution	Guidea practical activity	2 110013
Plane diffraction grating Determining the grating's	Guided practical activity	2 hours
frequency.	Surded proceed activity	
Malus law. Determination of the polarization degree at a		
laser diode.	Guided practical activity	2 hours
The study of rotatory polarization at solids.	Guided practical activity	2 hours
The study of rotatory polarization at liquids. Laurent	Guided practical activity	2 hours
polarimeter.		
Thermal radiation; Stefan-Boltzmann law.	Guided practical activity	2 hours
Thermal radiation; Wien's displacement law.	Guided practical activity	2 hours
The study of optical detectors. Determination	Guided practical activity	2 hours
of spectral sensitivity.		
Bibliography:		
Ovidiu Toma, Doina Bejan, Marian Băzăvan, Iulian Ioniță	á, Mircea Bulinski, "Geometrical Op	tics, Practical Works,

Exercises and Problems" Editura Universitatii Bucuresti (2021);				
D.Bejan, M.Bazavan, I.Ionita, O.Toma, M.Bulinski, I.Gruia, "Lucrari practice de optica geometrica", Editura				
Universitatii din Bucuresti (2013).				
D Bejan, M. Bazavan, I. Ionita, O. Toma - Lucrari Practice de Optica Ondulatorie, Ed. Unibuc. Buc, Bucuresti, 2013.				
St.Levai, A.Ioan, L.Nasta, Optica. Exercitii si probleme, Tipografia Universitatii din Bucuresti (1984)				
8.4. Project	Teaching and learning	Observations		
	techniques	Observations		
Bibliography:				
-				

he discipline content is based on a tradition of over 150 years of teaching Optics at University of Bucharest, improved and correlated with todays directions of development in optics as presented in the papers and conferences of international societies OSA and SPIE. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Rochester Institute of Optics, Rochester University). The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, secondary school teaching – INFLPR, INFM, INOE, IOR as the main employers of our graduates with competences in Optics).

10. Assessment

Activity type	10.1 Accessment criteria	10.2. Assessment	10.3. Weight in
Activity type	ity type 10.1. Assessment cinena		final mark
10.4. Lecture	 - coherence and clarity of 	Final written evaluation:	50%
	exposition	Test of theoretical	
	 correct use of 	knowledges and applied	
	equations/mathematical	problems.	
	methods/physical models and theories	Continue evaluation	20%
	 ability to indicate/analyse 	Attendance	10%
	specific examples		
10.5.1. Tutorial	X	X	X
10.5.2. Practical	- Applying specific methods of	Evaluation by practical test	20%
	solving the given problem;		
	- Results interpretation;		
10.5.3. Project			
10.6. Minimal requirements for	or passing the exam		
Mandatory attendance: 50	% from lectures and all practicals comple	eted.	

• At least mark 5 at the end of evaluation.

Date 2.11.2021 Teacher's name and signature Conf. Dr. Mircea BULINSKI Lect. Dr. Ing. Ovidiu TOMA

Date of approval 11.11.2021

Lect. Dr. Ing. Ovidiu TOMA Head of Department

Practicals/Tutorials instructor(s)

Conf. Dr. Mircea BULINSKI

name(s) and signature(s)

Lect.dr. Roxana ZUS

DI.202F.EN Analytical Mechanics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma, Lasers

1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Analytical M	echanics	5				
2.2. Teacher				Associate prof. d	lr. Iulia	Ghiu		
2.3. Tutorials/Practicals	instru	ctor(s)		Teaching assist.	dr. And	lreea Croitoru		_
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content ¹⁾	DS
	2		3	evaluation	E	Classification of course unit	Type ²⁾	DI
					(D)			

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	2	Practical s	Project	
3.2. Total hours per	56	dictribution	Locturos	28	Tutoriale	28	Practical	Droject	
semester	50		Lectures	20	Tutorials	20	S	Floject	
3.3 Distribution of estimat	ed tin	ne for study							hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 20				20					
3.3.2. Research in library, study of electronic resources, field research					20				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks 2				25					
3.3.4. Examination									4
3.3.5. Other activities									
3.4. Total hours of individu	ual stu	ıdy		(59				
		-				1			

3.5. Total hours per semester	125
3.6. ECTS	5

4. Prerequisites (if necessary)

· · · · ·	
4.1. curriculum	Mechanics, Electricity and magnetism, Algebra, Real and complex analysis, Equations of
	mathematical physics
4.2. competencies	A good level of algebra, geometry, trigonometry, real and complex analysis

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (video projector, PC).
5.2. for practicals/tutorials/projects	Video projector

6. Specific competences acquired

Professional competencies	Using the law of physics in a proper way for a given problem. To be able to communicate and analyze the information from the lectures, from the scientific literature, as well as the information for popularization of physics.
Transversal competencies	Using in an efficient way the informational and communication resources in a foreign language.

7. Course objectives

7.1. General objective	Understanding the concepts of analytical mechanics, developing the ability of colving problems of analytical mechanics.
	solving problems of analytical mechanics.
7.2. Specific objectives	Developing the ability of applying the Lagrangian and Hamiltonian formalisms
	in order to solve complex problems of analytical mechanics.

8.1. Lectures [chapters]	Teaching techniques	Observations
Constraints. The d'Alembert principle. Generalized	Systematic exposition – lecture.	2 h
forces	Heuristic conversation. Critical	
	analysis. Examples	
Lagrange equations. Lagrange equations for systems	Systematic exposition – lecture.	4 h
with potential applied forces. The Lagrange function.	Heuristic conversation. Critical	
The analytic structure of the kinetic energy. Generalized	analysis. Examples	
momenta and cyclic coordinates. Conservation of energy		
Modification of the Lagrange function leaving the	Systematic exposition – lecture.	3 h
Lagrange equations unchanged. Plane pendulum: the	Heuristic conversation. Critical	
force in the cord, the period of oscillation	analysis. Examples	
Equilibrium configuration. Small oscillations: Lagrange	Systematic exposition – lecture.	3 h
equations, normal frequencies	Heuristic conversation. Critical	
	analysis. Examples	
Hamilton's principle. The equivalence of Hamilton's	Systematic exposition – lecture.	2 h
principle with Lagrange's equations	Heuristic conversation. Critical	
	analysis. Examples	
The Hamilton function. Hamilton equations.	Systematic exposition – lecture.	2 h
Modification of the Hamilton function induced by a	Heuristic conversation. Critical	
Variation of a dynamical variable. The Deiscon bracket	analysis. Examples	
Properties of the Poisson brackets. The fundamental	Systematic exposition – lecture	2 h
Poisson brackets, Poisson's theorem. The Hamilton	Heuristic conversation Critical	2 11
function expressed using the spherical coordinates	analysis Examples	
The electromagnetic potentials The Lorentz force	Systematic exposition – lecture	2 h
expressed in terms of the electromagnetic potentials	Heuristic conversation. Critical	
	analysis. Examples	
The Lagrange function for a charged particle in an	Systematic exposition – lecture.	2 h
electromagnetic field. The Hamilton function for a	Heuristic conversation. Critical	
charged particle in an electromagnetic field.	analysis. Examples	
Modification of the Lagrange function and Hamilton		
function induced by a gauge transformation		
Two-body problem. Central field of force: general	Systematic exposition – lecture.	2 h
feature of the trajectory. Central field: the Lagrange	Heuristic conversation. Critical	
function. Conservation laws	analysis. Examples	
The radial equation. The Binet's equation. The effective	Systematic exposition – lecture.	4 h
potential energy of a particle in a repulsive Coulomb	Heuristic conversation. Critical	
field. The effective potential energy of a particle in an	analysis. Examples	
attractive Coulomb field. The equation of the trajectory		
trajectory. The study of the elliptic motion of a particle		
in a Coulomb field		
Bibliography:		
1. H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3	Red Edition, Addison-Wesley, 2001,	
2. I. Merches , L. Burlacu, Applied analytical mechanics, '	'The Voice of Bucovina'' Press, 1995	
3. T. Kibble, F. Berkshire, Classical Mechanics, 5th Editio	n, Imperial College Press, 2004.	
4. F. D. Aaron, Mecanica analitica, Editura BIC ALL, 200	2.	
8.2. Tutorials	Teaching and learning	Obcomunitions
	techniques	Observations
Lagrange formalism	Problem solving. Guided work	8 h
Small oscillations	Problem solving. Guided work	4 h
Hamilton formalism	Problem solving. Guided work	8 h
The motion of a particle in a central field	Problem solving. Guided work	8 h
Bibliography:	-	
1. I. Merches , L. Burlacu, Applied analytical mechanics, '	The Voice of Bucovina" Press, 1995	
2. L. Burlacu, D. David, Probleme de mecanica analitica,	Editura Universitatii din Bucuresti, 1	1988.
8.3. Practicals	techniques	Observations

Bibliography:		
8.4. Project	Teaching and learning	Observations
	techniques	Observations
Bibliography:		

This course unit develops some theoretical competences and abilities which are important for an undergraduate student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, secondary school teaching).

10. Assessment

Activity type	10.1 Assessment criteria	10.2. Assessment	10.3. Weight in			
Activity type	10.1. Assessment criteria	methods	final mark			
10.4. Lecture	- Understanding the basic concepts of	Written examination	90 %			
	Analytical Mechanics					
	- Correct use of equations and					
	physical models					
10.5.1. Tutorial	- Ability of solving problems of	Homeworks	10 %			
	Analytical Mechanics					
10.5.2. Practical						
10.5.3. Project						
10.6. Minimal requirements for passing the exam						
For getting the mark 5:						
Attending minimum 50 % of the lectures and 75 % of the tutorials.						

Minimum 50 % of the requirements for the final mark.

Date 5.11.2021

Associate prof. dr. Iulia Ghiu

Teacher's name and signature

Practicals/Tutorials instructor(s) name(s) and signature(s) Teaching assist. dr. Andreea Croitoru

Date of approval 11.11.2021

Head of Department Lect. dr. Roxana Zus

DI.203F.EN Electrodynamics and Theory of Relativity I

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)

1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	Electrodynar	nics and	Theory of Relativi	ty I			
2.2. Teacher Conf.dr				ladalin	a		
2.3. Tutorials/Practicals instructor(s)			Lect.dr. Baran V	. Virgil			
2.4. Year of study	2.5. Semester		2.6. Type of		2.7.	Content 1)	DF
		Ι	evaluation	E	Classification	Trupo ²⁾	DI
					of course unit	Type	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

(-		
3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	2	Practicals		Project	
3.2. Total hours per semester	56	distribution:	Lectures	28	Tutorials	2 8	Practicals		Project	
3.3 Distribution of estimat	ed tin	ne for study								hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 30						30				
3.3.2. Research in library, study of electronic resources, field research 15						15				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks 20						20				
3.3.4. Examination 4					4					
3.3.5. Other activities										
3.4. Total hours of individual study 65										
3.5. Total hours per semester 125										

4. Prerequisites (if necessary)

3.6. ECTS

4.1. curriculum	Real and Complex Analysis , Algebra , Geometry and Differential Equations , Equations
	of Mathematical Physics , Electricity and Magnetism
4.2. competencies	Knowledge about :
	- Phenomenological basics of electromagnetism
	- Differential and integral calculus, partial differential equations, special functions,
	orthogonal polynomials

5

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia equipped class (videoprojector), internet connection
	Lecture notes
	Recommended bibliography
5.2. for practicals/tutorials/projects	Multimedia equipped class (videoprojector), internet connection
	Lecture notes
	Recommended bibliography

6. Specific competences acquired

the provide the pr	
Professional	- Identification and appropriate use of main laws and principles of physics in a given context.
competencies	- Solving problems of physics in imposed conditions, using numerical and statistical methods
	– Applying knowledge from the field of physics both in concrete situations from related fields, as
	well as in some experiments, using the standard laboratory equipment.
	- Communication and analysis of information with didactic, scientific and popularization character in
	the field of Physics
	- Interdisciplinary approach of some physics topics
Transversal	
competencies	– Achievement of professional tasks in efficient and responsible way with the compliance of ethics
	legislation specific to the field, under qualified assistance.
	- Efficient use of information sources and of resources of communication and formation in a foreign
	language.

7. Course objectives

7.1. General objective	-Understanding the fundamental aspects related to the study of the electromagnetic field both in stationary and variable cases, based on the laws of electromagnetism. Training capacities to approach and solve specific problems . -Acquiring knowledge concerning the various applications of the theory of electromagnetic field. Training capacities to approach and solve specific problems.
7.2. Specific objectives	 Acquiring knowledge of specific physical theories/models Developing the ability to work in a team Understanding of the fundamental laws of electromagnetism, conservation laws of electric charge, electromagnetic energy and momentum, of the concept of electromagnetic potential, of the multipole fields. Understanding the influence of matter on the electromagnetic field. Acquiring the skills to describe and calculate the electromagnetic field of various systems of charges and currents, by use of specific mathematical techniques. Understanding the concept of electromagnetic radiation and acquiring the support knowledge for describing and calculating the electromagnetic field radiated by specific systems. Acquiring the skills to describe various types of radiative systems (antennas). Understanding the propagation of the electromagnetic field as waves, their specific physical quantities, the polarization, reflection and refraction of waves. Understanding and study of optical phenomena on the basis of electromagnetic laws.

8. Contents		
8.1. Lectures [chapters]	Teaching techniques	Observations
Electric field of volume charge distributions. The Poisson equation for the electric potential. Green's Theorem. The boundary value problems for the Poisson equation; Dirichlet and Neumann boundary conditions.	Systematic exposition - lecture. Examples	5
The uniqueness theorem. General methods for solving the Poisson equation. Conservation of the electric charge; continuity equation.		
The magnetic field of current distributions. The equations of the magnetic field in vacuum in the stationary regime. Volume distribution of currents. Integral representation of the vector potential.	Systematic exposition - lecture. Examples	2
The fundamental laws of electromagnetism. Generalization of the equations of the stationary field to the time-dependent case. The Maxwell equations for the electromagnetic field in vacuum. The local and integral form of electromagnetism lows.	Systematic exposition - lecture. Examples	2
Electrodynamics potentials. Gauge transformations, equations of the potentials, retarded and advanced potentials.	Systematic exposition - lecture. Examples	2
General theorems of the electromagnetic field. Theorem of the energy of the electromagnetic field in vacuum (Poynting). Theorems of the kinetic and angular momentum of the electromagnetic field in vacuum.	Systematic exposition - lecture. Examples	3
Multipole analysis of the electromagnetic field. Multipole expansion of retarded potentials. Electric and magnetic multipoles. Averaging of the microscopic electromagnetic field equations. Maxwell's equations in polarizable / magnetizable media. P, D, M, H, vectors. The discontinuity of the electromagnetic field at the interface between two different media. Energy, force and torque exerted by an external field on a localized system of charges and currents.	Systematic exposition - lecture. Examples	7

Radiation of localized systems of charges and currents.	Systematic exposition - lecture.	2		
The field and radiation of simple charge and current	Examples			
distributions. Dipole approximation. Types of antennas.	_			
Propagation of the electromagnetic field. Properties of	Systematic exposition - lecture.	5		
plane electromagnetic waves; the monochromatic case	Examples			
(phase, wavelength, frequency, polarization). The laws	_			
of reflection and refraction. Snell's law. Total internal				
reflection. Fresnel's relations for an arbitrary angle.				
Polarization by reflection. Reflection and transmission				
coefficients.				
Bibliography:				
W.K.H. Panofski, M. Phillips, Classical Electricity and 1	Magnetism , 2-nd ed. , AddisonWesle	ey, Reading, Mass., 1962		
R.M. Fano, L.J.Chu, R.B.Adler, Electromagnetic Fields	, Energy and Forces, John Wiley⪼	ons, 1963		
R. Becker , Electromagnetic Fields and Interactions, Dove	er Publications, 1982			
H. C. Ohanian, Classical Electrodynamics, 1988, Allyn	and Bacon, 1988			
O.D. Jefimenko , Electricity and Magnetism: An Introduction to the Theory of Electric and Magnetic Fields, ed.2,				
Appleton-Century-Crofts, 1989				
C. Vrejoiu, Electrodinamica si teoria relativitatii, Editura	a didactica si pedagogica, Bucuresti,1	993		
W. Greiner, Classical Electrodynamics, Springer Verlag,	1998			
J. Schwinger, L. DeRaad jr., K.A. Milton, Wu-Yang Tsai, Classical electrodynamics, Perseus Books, 1998				
J. D. Jackson, Classical electrodynamics, 3-rd ed., John Wiley & Sons, 1998				
F. Melia , <i>Electrodynamics</i> , University of Chicago Press, 2001				
L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, ed. 4, Butterworth, -Heinemann, 2003				
F.E. Low, Classical Field Theory. Electromagnetism and Gravitation Wiley-VCH Verlag 2004				
D.J. Griffiths , Introduction to Electrodynamics, 4-th ed., Pearson, 2013				

Wolfgang Nolting, *Theoretical Physics 3: Electrodynamics,* Springer; 2016 **C. Stoica,** *Note de curs, in format electronic,* pe site-ul departamentului.

8.2. Tutorials	Teaching and learning	Observations
Elements of field theory and reater and differential	Rechniques	4 b
Elements of field theory and vector and differential	Problem solving. Guided work.	4 11
calculus (grad, div, rot and curl). Curvillear orthogonal	Case study. Examples.	
coordinates. Differential operators in curvilinear		
Coordinates (spherical, cylindrical, polar).		
Point-like, linear, surface charge distributions written as	Problem solving. Guided work.	2 h
generalized volume densities. The Dirac distribution and	Case study. Examples.	
its properties.		
Calculation of the electric potențial in the presence of a	Problem solving. Guided work.	5 h
conductor using the expansion of the solution in the	Case study. Examples.	
basis of complete sets of special functions and		
orthogonal polynomials. Spherical functions, Legendre		
polynomials, Bessel functions. The solutions of the		
Sturm Liouville problem for the Legendre and Bessel		
equations. Completeness, orthogonality, integral		
representations, generating functions, recurrence		
relations. Green function method.		
Multipole expansion of the electric and magnetic	Problem solving. Guided work.	3 h
potential. Electric and magnetic multipoles.	Case study. Examples.	
The energy, force and torque exerted by an external field		
on multipole systems. Spherical multipoles.		
Computation of the magnetic field of given current	Problem solving. Guided work.	4 h
distributions using the method of the scalar and vector	Case study. Examples.	
potential. The magnetic field of linear, surface and		
volume current distributions (in the volume and on the		
surface of a sphere/cylinder).		
Conservation laws in electrodynamics. Computation of	Problem solving. Guided work.	2 h
the energy, momentum and angular momentum of	Case study. Examples.	
various electromagnetic field configurations with		
spherical, planar and cylindrical symmetries in vacuum.		
Electrostatic problems with dielectric bodies.	Problem solving. Guided work.	4 h

Polarization of a spherical dielectric in an external homogeneous field or in the field of a point-like charge. Polarization surface charge. A point-like electric charge near the plane interface of two adjacent dielectrics. Screening of the electric and magnetic field by a dielectric. Spherical screen. The dipole radiation. Linear and circular antenna. The	Case study. Examples. Problem solving. Guided work.	2 h
radiation field, angular distribution and total radiated power. Polarization of the radiated field.	Case study. Examples.	
Study of the properties of the monochromatic waves. Polarization. Stokes parameters	Problem solving. Guided work. Case study. Examples.	2 h
 V. Novacu, Culegere de probleme de electrodinamica, Edi V.V. Batygine, I.N. Toptygine, D. TerHaar, Problems in J. S. B. Cahn, B. E. Nadgorny, A Guide to Physics Problem Springer, Boston, MA, 1994 C. Brau, Modern Problems in Classical Electrodynamics, Lim Yung-kuo (ed.), Problems and Solutions on Electrom Syed A. Nasar 2008+ Solved Problems In Electromagnetist J. Pierrus, Solved Problems in Classical Electromagnetist University Press; Illustrated edition (September 19, 2018) 	tura tehnica , Bucuresti , 1964 Electrodynamics , Ed.2, Academic Pr s, Part 1: Mechanics, Relativity, and Oxford University Press, 2004 agnetism, World Scientific, 2005 cs Sci Tech Publishing 2007 m: Analytical and Numerical Solution	ess , 1978 Electrodynamics, as with Comments, Oxford
8.3. Practicals	Teaching and learning techniques	Observations
Bibliography:	<u> </u>	
8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

This course unit develops some theoretical competences and abilities which are fundamental for an undergraduate student in the field of modern physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, academic, secondary school teaching).

10. Assessment

A attivity type	10.1 Accompant criteria	10.2. Assessment	10.3. Weight in
Activity type	10.1. Assessment criteria	methods	final mark
10.4. Lecture	- coherence and clarity of exposition -correct use of equations / mathematical methods / physical models and theories	Written test / oral examination	60%
	- ability to indicate / analyse specific examples		
10.5.1. Tutorial	-ability to use specific problem solving methods - ability to analyse the results	Homeworks/written tests	40%
10.5.2. Practical			
10.5.3. Project			
10.6. Minimal requirements for	or passing the exam		

Date 5.11.2021 Teacher's name and signature Madalina Boca Practicals/Tutorials instructor(s) name(s) and signature(s) Virgil V. Baran

Date of approval 11.11.2021

Head of Department Lect.dr. Roxana Zus

DI.204F.EN Fundamentals of Atomic Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Fundamental	Fundamentals of Atomic Physics					
2.2. Teacher			Conf.dr. Vasi	le Berc	cu			
2.3. Tutorials/Practicals	instru	ictor(s)		Conf.dr. Vasi	le Berc	cu		
2.4. Year of study		2.5. Semester		2.6. Type of		2.7. Classification	Content 1)	DF
	2		Ι	evaluation	E	of course unit	Tupo ²⁾	DI
							Type	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	1	Practicals	1	Project	-
3.2. Total hours per semester	56	distribution:	Lectures	28	Tutorials	14	Practicals	14	Project	-
3.3 Distribution of est	imated	time for study								hours
3.3.1. Learning by usi	ng one	's own course n	otes, manuals	, lectu	ire notes, bib	liogra	iphy			20
3.3.2. Research in library, study of electronic resources, field research				15						
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks				30						
3.3.4. Examination			4							
3.3.5. Other activities				-						
3.4. Total hours of individual study 65										
3.5. Total hours per semester 125										
3.6. ECTS					5	1				

4. Prerequisites (if necessary)

4.1. curriculum	Classical Mechanics I,II; Molecular Physics and Heat I, II; Electricity and magnetism; Real analysis: Ontics
4.2. competencies	Knowledge of mathematics, classical mechanics, molecular physics and heat

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Amphitheater equipped with multimedia devices (video)
5.2. for practicals/tutorials/projects	Laboratory with experimental set up for atomic experiments
	Computers

6. Specific competences acquired

<u> </u>	
Professional	C1: Identification and appropriate use of main physical laws and principles in a given context.
competencies	C2: Use of software for analysis and data processing.
	C3: Troubleshooting the physical conditions required using numerical and statistical methods
	C4: Applying knowledge in the field of physics both in concrete situations from related fields as well
	as in experiments, using standard laboratory equipment
	C5: Communication and analysis of didactic, scientific and dissemination of information
	C6: Interdisciplinary approach to physics topics.
Transversal competencies	CT1- Achievement of the professional duties in an efficient and responsible way with compliance with deontological legislation specific to the domain under qualified assistance. CT3: Effective use of information sources and communication resources and training assistance, both
	in Romanian and in a foreign language.

7. Course objectives

7.1. General objective	Assimilation of theoretical and experimental foundations of phenomena related
	to the fundamentals of atomic physics
7.2. Specific objectives	Familiarization with the fundamental concepts and models in the field of atomic
	physics;
	Acquiring scientific methods of analysis;
	Description and understanding of mathematical methods associated with the
	field of atomic physics;
	Developing the ability to quantitatively analyze specific cases and to interpret
	the fundamental phenomena in the field;
	Development of the ability to apply appropriate numerical models for modeling
	phenomena from the atomic level;
	Development of experimental skills and acquisition of the main principles used
	in atomic physics.

8.1. Lectures [chapters]	Teaching techniques	Observations
The electron	Systematic exposition -	2 hours
- deviation in magnetic and electric field of electrons	lecture. Heuristic	
and ion beans	conversation. Critical	
- the parabolic method	analysis. Examples	
- the specific charge		
- the variation of electron mass with velocity		
- the classical radius of electron		
Thermal radiation and the hypothesis of quantum energy	Systematic exposition -	4 hours
- the black body radiation(the Wien and Stefan–	lecture. Critical analysis.	
Boltzmann radiation laws)		
- the Rayleigh-Jeans law – "the ultraviolet catastrophe"		
- The Planck radiation law		
The corpuscular proprieties of radiation	Systematic exposition -lecture.	3 hours
- photoelectric effect	Heuristic conversation.	
- Compton effect		
- continuum spectra of X ray		
The wavelike behavior of particles	Systematic exposition -lecture.	3 hours
- de Broglie iphothesis	Heuristic conversation.	
- electron diffraction		
- wave–particle duality: the wave packet		
The atomic structure	Systematic exposition -	4 hours
- scattering cross section	lecture.Examples.	
- the Rutherford experiment		
- alpha particle in nuclear field		
Atomic models	Systematic exposition -	4 hours
- Thomson model	lecture. Heuristic	
- Rutherford model	conversation.	
- Bohr model		
- Bohr-Sommerfeld model		

Atoms in magnetic fields	Systematic exposition -	4 hours
- Stern-Gerlach experiment	lecture. Heuristic conversation.	
- orbital magnetic moment		
- the electron spin		
- the Zeeman effect		
Spin-orbit interaction	Systematic exposition -	4 hours
The vector model of atom	lecture. Heuristic conversation.	
Bibliography:		•

- Fizica atomica: note de curs, Florin Popescu si Florin Marica ; Ars Docendi, 1998

-Fizica atomului si a moleculei B. H. Bransden si C. J. Joachain, Bucuresti, 1998

- Fizica atomică - Vol I, V. Spolschi, Editura Tehnica, 1953

- Atkins' physical chemistry - Peter Atkins, Julio de Paula, Oxford University Press, 2010

- Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- and Quantum Physics -Wolfgang Demtröder Springer; 2nd ed. 2010

- Quantum physics of atoms, molecules, solids, nuclei and particlesRobert Martin Eisberg and Robert Resnick, New York ; John Wiley & Sons, 1974

- The physics of atoms and quanta : introduction to experiments and theory Haken, Hermann Wolf, Hans Christoph Berlin; Springer, 1994

8.2. Tutorials	Teaching and learning techniques	Observations
The laws of black body radiation. Problems	Example. Problems.	2 hours
	Guided work	
Photon - the corpuscular character of radiation.	Example. Problems.	2 hours
Problems	Guided work	
Electron diffraction – undulating the wavelike behavior	Example. Problems.	2 hours
of particles and the wave-particle duality. Problems	Guided work	
The gamma-rays spectroscopy: photon-crystal	Example. Problems.	2 hours
interaction, the photomultiplier principles. Processing	Guided work	
signals generated by gamma photons: the amplitude		
spectrum, calibration and determination of photon		
energy.		
The structure of atoms. Problems	Example. Problems.	2 hours
	Guided work	
The atomic models. Problems	Example. Problems.	2 hours
	Guided work	
Atoms in the magnetic field. Problems	Example. Problems.	2 hours
	Guided work	

Bibliography:

- Fizica atomica: note de curs, Florin Popescu si Florin Marica ; Ars Docendi, 1998

-Fizica atomului si a moleculei B. H. Bransden si C. J. Joachain, Bucuresti, 1998

- Fizica atomică - Vol I, V. Spolschi, Editura Tehnica, 1953

- Atkins' physical chemistry - Peter Atkins, Julio de Paula, Oxford University Press, 2010

- Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- and Quantum Physics -Wolfgang Demtröder Springer; 2nd ed. 2010

- Quantum physics of atoms, molecules, solids, nuclei and particlesRobert Martin Eisberg and Robert Resnick, New York

; John Wiley & Sons, 1974

- The physics of atoms and quanta : introduction to experiments and theory Haken, Hermann Wolf, Hans Christoph Berlin; Springer, 1994

8.3. PracticalsDetermination of the specific charge of the electron	Teaching and learning techniques	Observations
Determination of the specific charge of the electron	Guided practical activities	2 hours
Determination of Planck's constant using the photoelectric effect	Guided practical activities	2 hours
Continuous spectra emitted by the X-ray tube. Determination of Planck's constant.	Guided practical activities	2 hours
The Millikan experiment – determination of the elementary charge	Guided practical activities	2 hours
The Compton effect	Guided practical activities	2 hours

The electron diffraction	Guided practical activities	2 hours
Balmer series. Determination of Rydberg's constant.	Guided practical activities	2 hours

Bibliography:

- Fizica atomica : lucrari practice, colectiv de autori: Elena Borca, et al. Tipografia Universitatii din Bucuresti, 1984

- Lucrari practice de fizica atomica, care se gasesc pe site-ul : http://brahms.fizica.unibuc.ro/atom/LabAtom.php - Fizica atomica: note de curs, Florin Popescu si Florin Marica ; Ars Docendi, 1998

-Fizica atomului si a moleculei B. H. Bransden si C. J. Joachain, Bucuresti, 1998

- Fizica atomică - Vol I, V. Spolschi, Editura Tehnica, 1953

- Atkins' physical chemistry - Peter Atkins, Julio de Paula, Oxford University Press, 2010

- Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- and Quantum Physics -Wolfgang Demtröder Springer; 2nd ed. 2010

- Quantum physics of atoms, molecules, solids, nuclei and particlesRobert Martin Eisberg and Robert Resnick, New York ; John Wiley & Sons, 1974

- The physics of atoms and quanta : introduction to experiments and theory Haken, Hermann Wolf, Hans Christoph Berlin: Springer, 1994

8.4. Project	Teaching and learning techniques	Observations		
Bibliography:				

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit forms/develops some theoretical and/or practical competences and abilities which are fundamental for an undergraduate student in the field of modern Physics, corresponding to national and European/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in
Theat they type	TOTT TO SUSSMENT CITCHU	methods	final mark
10.4. Lecture	 coherence and clarity of exposition correct use of equations/ mathematical methods/physical models and theories ability to indicate/analyses specific examples 	Continuous Evaluation a) Partial examination of theoretical knowledge: written and oral	30%
	- ability to solve course-specific practical problems	b) Answers and activity during the lectures	5%
		c) Final examination of theoretical knowledge: written and oral	30%
		For online assessment, the subjects will be electronically sent via Google Classroom / Microsoft Teams, and during the exam students will have their video camera turned on, the exam being recorded.	10.0/
10.5.1. Tutorial	 ability to use specific problem solving methods ability to analyses the results	Homework and answers during the tutorials	10 %
10.5.2. Practical	- ability to use specific experimental methods/apparatus	Colloquium examination	25%

	- ability to perform/design specific					
	experiments					
	- ability to present and discuss the re	sults				
10.5.3. Project						
10.6. Minimal requirements for	or passing the exam					
Attendance at least 50% of the	e number of class hours and compulso	y attend	lance at all laboratory and t	utorials meetings.		
To obtain minimum the mark	5 from evaluation criteria.					
Requirements for mark 5 (10	points scale)					
Know the notions related to the	ne black body, deducing Planck's relati	onship a	and solving specific probler	ns.		
Correct understanding of the	notions related to the corpuscular chara	cter of	radiation: photoelectric effe	ect, Compton		
effect, and solving specific pr	oblems.		-	-		
Correct understanding of the	notions related to the wave like nature	of matte	er: de Broglie's hypothesis,	electron		
diffraction, and solving specif	fic problems.					
Correct understanding of the	notions related to wave-corpuscle dual	ty and t	he use of wave packets			
Know how to calculate different	ent sizes characteristic of atoms using a	itomic r	nodels			
Correct understanding of the	notions related to the magnetic propert	es of at	oms.			
Know how to use the basics o	f the course content in simple applicat	ons.				
Data	Teacher's name and signature	Pra	cticals/Tutorials instructor(s)		
	Teacher's name and signature	nan	ne(s) and signature(s)	-		
4.11.2021	Conf. dr. Vasile Bercu					

Date of approval 11.11.2021

Conf.dr. Vasile Bercu

Head of Department Prof.dr. Alexandru Jipa

DI.206F.EN Scientific English III

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Foreign Languages and Literatures
1.3. Department	Department of Modern Languages
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Scientific En	glish III					
2.2. Teacher				Lecturer Monica Oanca, PhD				
2.3. Tutorials/Practicals instructor(s)			-	-				
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DC
	II		Ι	evaluation	С	Classification of course unit	Type ²⁾	DI

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in	1	distribution	Locturos		Tutoriale	1	Dracticals		Drojoct	
curriculum	1	uisti ibutioii.	Lectures	-	Tutoriais	L	Flacticals	-	FIOJECI	-
3.2. Total hours per	14	distribution	Loctures		Tutoriala	14	Dracticala		Draiact	
semester	14	distribution:	Lectures	-	Tutorials	14	Placticals	-	Project	-
3.3 Distribution of estimated time for study							hours			
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography							2			
3.3.2. Research in library, study of electronic resources, field research						3				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks						2				
3.3.4. Examination										4

3.3.5. Other activities		
3.4. Total hours of individual study	7	
3.5. Total hours per semester	25	
3.6. ECTS	1	

4. Prerequisites (if necessary)

I (
4.1. curriculum	A good command of English – level B2
4.2. competencies	-

-

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	-
5.2. for tutorials/projects	If the seminar takes place in a classroom, a blackboard and a video projector are
	required
	The seminar can be held online, and each student is responsible for making sure
	that he/she has a microphone. It is advisable to turn the camera on during the
	seminar.

6. Specific competences acquired

Professional	1. Defining and describing the main notions of grammar and vocabulary
competencies	2. Defining the five specific competencies:
	Understand a written text
	Understanding a listened message
	Conducting a conversation
	Delivering an oral presentation of a topic
	Writing compositions
Transversal competencies	 Develop the reading skills in English to read texts needed for Physics classes and seminars Writing a project on a physics topic that will be presented orally in front of the classmates Write an essay on a Physics related topic

7. Course objectives

7.1. General	Understanding and using the specialized vocabulary necessary for reading texts and then elaborating
objective	essays on Physics related topics.
7.2. Specific	1. Knowledge and understanding (knowledge and proper use of vocabulary related to Physics)
objectives	Revise general knowledge of English and apply it to comprehension in Physics-related texts as mentioned
	in the seminar topics
	2. Explanation and interpretation (explaining and interpreting some ideas, projects, processes, as well as
	the theoretical and practical contents of the discipline)
	Specialized expressions will be explained and commented upon; their use in the specific context of the
	English language will be emphasised. Some physics concepts will be translated and the difference
	between English and Romanian will be analysed. False friends, as well as structures that appear only in
	English will be mentioned.
	3. Instrumental - applications (design, management and evaluation of specific practical activities; use of
	methods, techniques and tools for investigation and application).
	Students will use their computers to design PowerPoint presentations, as well as other tools to write their
	projects.
	4. Attitudinal (manifestation of a positive and responsible attitude towards the scientific field / cultivation
	of a scientific environment focused on democratic values and relations / promotion of a system of
	cultural, moral and civic values / optimal and creative capitalization of one's own potential in activities)
	Students will develop the ability to use English texts for writing a seminar paper in English for one of the
	specialized seminars (in the field of physics). During the seminar the stress will be on originality and
	correct citation of sources.
	Students will be advised to assume their responsibility for their work and they will be taught to engage in
	various projects and in partnership with other specialists
	Teamwork – collaboration is encouraged, but provided that each participant has a well-defined
	contribution.
8. Contents	

o. Contento		
8.2. Tutorials	Teaching and learning techniques	Observations

•	The World of Science	In all seminars students will	All seminars will use
-	Astronauts and Space stations	interact with one another and will	specialized texts written
-	Si-Fi films versus reality	have to solve vocabulary	by native speakers
-	Writing a report	exercises and repeat grammar	(excerpts from books,
•	Means of communication	structures.	magazines, etc.),
	Mobile phones a benefit or social nuisance	Texts related to the proposed	vocabulary and
•	The Body clock	topics will be discussed and	grammar exercises, as
•	Health and fitness	comprehension exercises will be	well as recordings of
•	Writing an opinion essay	done. Conversations on these	native English speakers.
-	Decision-making skills	topics will be initiated, and	
-	Expressing opinions about the future	listening exercises will be	
-	Pieces of Career Advice	Conducted, too.	
•	Writing a letter of application	Students will give PowerPoint	
	14. Students' projects	one of the subjects studied.	

Bibliography:

McCarthy Michael, Felicity O' Dell, English Vocabulary in Use, (Upper Intermediate and Advanced), Cambridge University Press, 2002, 2005.

McCarthy Michael, Felicity O' Dell, Test your English Vocabulary in Use, (Upper Intermediate and Advanced), Cambridge University Press, 2002, 2005

Dearholt, Jim, Career Paths, Mechanics, Express Publishing, 2012

Virginia Evans, Jenny Dooley, Upstream Intermediate, Express Publishing, 2015.

Jan Bell Roger Gower, Advanced Expert, Coursebook, Pearson, 2017.

P. Frauenfelder and P. Huber, Introduction to Physics, Translated by F. S. Levin and J. L. Weil, Pergamon Press, 1978.

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The seminars follow the format of the foreign language seminars within the University of Bucharest and are in accordance with the international standards regarding the level of linguistic competences.

10. Assessment

A otivity type	10.1 Accomment criteria	10.2. Assessment	10.3. Weight in				
Activity type	10.1. Assessment Chteria	methods	final mark				
10.5.1. Tutorial	The ability to understand and use	Evaluation by written tests	40%				
	correctly the vocabulary discussed	Evaluation by oral tests	40%				
	during the seminars	portfolio	20%				
10.6. Minimal requirements for	or passing the exam						
- correct acquisition of level B2 of English,							
- correct use of the main notio	- correct use of the main notions of grammar						
- correct use of specialized terms							
- solving all the classwork posted on Google Classroom							

Date 10.11.2021 Teacher's name and signature Lecturer Monica Oanca, PhD

Practicals/Tutorials instructor(s) name(s) and signature(s)

Date of approval 11.11.2021

Head of Department Lect. univ. dr. Raluca Andreescu

DI.207F.EN Physical Education and Sport III

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	-
1.3. Department	Department of Physical Education and Sports
1.4. Field of study	Physics

1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	Physical Education	on and Sport III					
2.2. Teacher							
2.3. Tutorials/Practicals instruct	Lector uni	Lector univ dr.Cătălin Şerban					
2.4. Year of study 2	2.5. Semester	2.6. Type		2.7.	Content 1)	DC	
II	Ι	of	V	Classification	Type 2)	וח	
		evaluation		of course unit	Type	DI	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	1	distribution:	Lectures	0	Tutorials	0	Practicals	0	Proje ct	0
3.2. Total hours per	14	distribution:	Lectures	0	Tutorials	0	Practicals	14	Proje	0
semester	1.	distribution	Lectures	0	ratoriais	Ŭ	i fucticuis	1.	ct	Ŭ
3.3 Distribution of estimat	ed tin	ne for study								hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 0							0			
3.3.2. Research in library, study of electronic resources, field research 0							0			
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks 0							0			
3.3.4. Examination 4							4			
3.3.5. Other activities 7						7				
3.4. Total hours of individual study 7										
3.5. Total hours per semester			2	25						
3.6. ECTS				1]				

3.6. ECTS

4. Prerequisites (if necessary)

-	
4.1. curriculum	
4.2. competencies	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for practicals/tutorials/projects	

6. Specific competences acquired

Professional	 Knowledge and understanding.
competencies	-To acquire general knowledge about physical education and highlighting its specific content
	-To gain knowledge about the effects of motor activities on the body;
	To accumulate notions regarding the particularities of the physical education lesson at the level of
	non-profile higher education;
	-To apply the formative knowledge, in the field of physical education and sports, at the level of daily
	activities.
	 Explanation and interpretation
	-To establish the objectives and tasks specific to the activities carried out;
	-To develop the capacity to practice systematic and independent physical exercises;
	-To capitalize on communication in sports as a way of social integration;
	-To develop the ability to understand, operate and expand motor activity in free time and recreation;
	-To develop the ability to capitalize on the positive effects of physical education on personality and
	quality of life;
	Instrumental – applications
	-To design and apply exercise programs adapted to the objectives of the activity carried out;
	-To coordinate, integrate and participate in sports activities;
	-To identify solutions regarding the optimization of free time;
	-To mobilize human resources in volunteer actions;
	-To know the evaluation methods specific to physical education.

Transversal	-To integrate and participate in sports activities promoting the values of fair play;
competencies	-To develop principled and constructive relationships with the social partners;
	-To adapt, in optimal conditions and in an efficient way, to new situations;
	-To develop pro-active attitudes, positive thinking and interpersonal relationships;
	- To be aware of the importance of exercising on maintaining an optimal state of health, increasing
	the body's endurance and increasing the capacity for physical and intellectual work.

7. Course objectives

7.1. General objective	To be aware of the importance of exercising on maintaining an optimal state of health, increasing the body's endurance and increasing the capacity for physical and intellectual work
7.2. Specific objectives	 Maintaining an optimal state of health of students and improving the resistance of their body to the action of environmental factors and the specifics of professional activity; Ensuring superior indices of correct and harmonious physical development of the body; Improving skills, motor skills and knowledge on the practice of a sport; Cultivating the skills and habits of students to practice independently, in their free time, exercises and sports for corrective, fortifying, recreational or compensatory purposes; Engaging the mass of students in the systematic activity of practicing physical exercises, tourism and sports; Improving moral-volitional and intellectual qualities and traits, aesthetic sense and social responsibility

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
Bibliography:		
	The altient and learning	
8.2. Iutorials	leaching and learning	Observations
Bibliography:		
8.3. Practicals	Teaching and learning	Observations
Numbel of nours -14	techniques	
Introductory lesson – 1h	Audiovisual techniques (Power	Practical work
Initial verification -1h	Point presentation, teaching film	
Learning the basic technique – aerobic gymnastics and	presentation, audio material	
fitness – 3h	presentation)	
Learning the main tehnical elements with the ball		
(Basket-ball,football) – 4h		
Acquiring yhe main collective tactical action of attack		
end defense (Basket-ball,football) – 3h		
Intermediate verification- 2h		
Bibliography:		
Bibliografie Obligatorie:		

• Ganciu, M., (coord), colectiv DEFS, 2013, *Curs de educație fizică pentru studenții Universității din București*, Editura Universității din București, București

• Ganciu, M., Aducovschi, D., Gozu, B., Stoica, A.M., Stoicoviciu, A., Gulap, M., Cristea, M., 2010, *Activitatea fizică independentă și valorificarea prin mișcare a timpului liber – Vol.I*, Editura Universității din București, București Stoica, A., 2011, *Curs practic de gimnastică aerobică pentru studenții din Universitatea din București*. Editura Universității din București

Bibliografie facultativă:

• Colectivul DEFS, coord. Aducovschi D.,2008, *Sistemul de evaluare la educație fizică – pe discipline sportive – în Universitatea din Bucuresti*, Editura Universității din București

Colectivul DEFS, 2005, Designul instrucțional în optimizarea instruirii echipelor reprezentative ale								
Universității din București, Editura Universității din București								
C. Alte surse utile								
DVD-uri, internet	DVD-uri, internet							
8.4. Project	4. Project Teaching and learning techniques Observations							
Bibliography:								

Physical education is a social activity with special contributions to the social-professional integration of young people. The formative function of physical education will contribute to the development of these qualities and abilities, which will allow the future specialist to acquire the chosen profession as quickly and better as possible, to practice it with high efficiency, to be able to engage in various social activities. to be able to act independently and creatively on the environment and on his own person.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark	
10.4. Lecture				
10.5.1. Tutorial				
10.5.2. Practical	- interest in the discipline through systematic - participation in practical lessons (1h / week)		60%	
	- initial and intermediate testing by control tests and trials	individual assessment	30%	
	- participation in sports competitions		10%	
10.5.3. Project				
10.6. Minimal requirements for • participation in 50% of the to • passing motor tests	r passing the exam otal number of lessons			
· passing motor tests				

• participation in a sports competition

• to prove the minimum acquisition of the general notions of physical education and sports

Date 10.11.2021

Teacher's name and signature Lector univ dr.Cătălin Șerban Practicals/Tutorials instructor(s) name(s) and signature(s)

Date of approval 11.11.2021

Head of Department Prof. Stoica Alina, PhD

DI.203F.EN Electrodynamics and Theory of Relativity II

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Physics

1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	Course unit title Electrodynamics and T							
2.2. Teacher				Conf.dr Boca Madalina				
2.3. Tutorials/Practicals instructor(s)				Lect.dr. Baran V. Virgil				
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DF
	II			evaluation	Е	Classification	Type ²⁾	וח
						of course unit	Type	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in	4	distribution:	Lectures	2	Tutorials	2	Practicals		Project	
3.2. Total hours per	56	distribution:	Lectures	28	Tutorials	2	Practicals		Project	
3.3 Distribution of estimat	ed tim	le for study								hours
3.3.1. Learning by using o	ne's o	wn course notes	, manuals, l	lecture	notes, biblio	grapł	ıy			25
3.3.2. Research in library, study of electronic resources, field research 5							5			
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks 10						10				
3.3.4. Examination 4							4			
3.3.5. Other activities										
3.4. Total hours of individual study 40										
3.5. Total hours per semester				-	100					
3.6. ECTS 4										

4. Prerequisites (if necessary)

4.1. curriculum	Real and Complex Analysis , Algebra , Geometry and Differential Equations , Equations of Mathematical Physics , Electricity and Magnetism, Electrodynamics and Theory of Relativity I
4.2. competencies	 Knowledge about : Phenomenological basics of electromagnetism Differential and integral calculus, partial differential equations, special functions, orthogonal polynomials Nonrelativistic kinematics and dynamics of particles. Analytical formalism of classical mechanics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia equipped class (video projector), internet connection	
	Lecture notes	
	Recommended bibliography	
5.2. for practicals/tutorials/projects	Multimedia equipped class (video projector), internet connection	
	Lecture notes	
	Recommended bibliography	

6. Specific competences acquired

Professional	- Identification and appropriate use of main laws and principles of physics in a given context.		
competencies	- Solving problems of physics in imposed conditions, using numerical and statistical methods		
	– Applying knowledge from the field of physics both in concrete situations from related fields, as		
	well as in some experiments, using the standard laboratory equipment.		
- Communication and analysis of information with didactic, scientific and popularizatio			
	the field of Physics		
	- Interdisciplinary approach of some physics topics		

Transversal competencies	 Achievement of professional tasks in an efficient and responsible way with the compliance of ethics legislation specific to the field, under qualified assistance. Efficient use of information sources and of resources of communication and formation in a foreign
	- Efficient use of information sources and of resources of communication and formation in a foreign language.

7. Course objectives

7.1. General objective	 -Understanding the fundamental aspects related to the study of the special theory of relativity. Training capacities to approach and solve specific problems . -Acquiring knowledge concerning the various applications of the theory of theory of relativity. Training capacities to approach and solve specific problems.
7.2. Specific objectives	 Acquiring knowledge of specific physical theories/models Developing the ability to work in a team Acquiring the principles of STR, the basic notions concerning space and time, the Lorentz transformations, the relativistic kinematics and dynamics, the kinematics of relativistic collisions. Covariant formulation of the laws of electromagnetic field (EMF). Applying the covariant theory of EMF to the study of some physical systems: Radiation of accelerated point charge.

8.1. Lectures [chapters]	Teaching techniques	Observations
Physical basis of the Theory of Relativity (TR).	Systematic exposition - lecture.	2 h
Relativity principles. Frames of reference. Space and	Examples	
time. Time dilation and length contraction in Special		
Relativity. Lorentz transformations and their		
consequences. Relativistic formula of velocity addition.		
Minkowski space. Lorentz transformations as	Systematic exposition - lecture.	4 h
orthogonal	Examples	
transformations in Minkowski space. The matrix of a		
special Lorentz transformation (boost) and its properties.		
Scalars, 4- vectors and 4-tensors. Scalar product and		
norm of 4-vectors. Differential 4-vector operators. (4-		
gradient, 4-divergence). Wigner rotation.		
The relativistic invariant interval, classification and	Systematic exposition - lecture.	1 h
properties. Geometrical representation of Lorentz	Examples	
transformations.		
Elements of relativistic kinematics. Proper time. 4-	Systematic exposition - lecture.	2 h
velocity, 4- acceleration and their properties. Norms and	Examples	
relativistic transformations.		
Covariant dynamics of the relativistic particle. 4-force	Systematic exposition - lecture.	4 h
and 4-momentum. Covariant formulation of momentum	Examples	
and energy theorems. Energy-momentum relativistic		
relation. Relativistic transformations relations		
for momentum and energy. Relativistic Lagrange and		
Hamilton functions of the free particle and for the		
particle in an external field. Motion of a relativistic		
particle in an external EMF. Special cases		
Relativistic kinematics of relativistic collisions	Systematic exposition - lecture.	3 h
(interactions). Center of mass frame of two particles,	Examples	
total mass and the center of mass velocity. Energy,		
momentum and velocity of one particle in the proper		
frame of one other and in the Center of mass frame.		
Applications. Laboratory frame. Independent invariant		
parameters of binary elastic collisions.		
Covariant formulation of the laws of EMF. Covariant	Systematic exposition - lecture.	4 h
formulation of electric charge conservation (continuity	Examples	
eq.) . 4-current of electric charge. Covariant formulation of the EM potentials in Lorenz gauge. 4-potential. Relativistic transformations of the 4-current and 4- potential. Covariant formulation of Lorenz condition. The 4-tensor of the EMF. Covariant formulation of Maxwell equations in vacuum. Relativistic invariants of the EMF. Relativistic transformations of electric and magnetic field. Covariant formulation of the EMF equations in media (laws of macroscopic field). Average of eqs. of microscopic field. Polarization and excitation 4-tensors. Relativistic transformations of the P, D, M, H vectors. Covariant formulation of the EMF energy and momentum theorems. Energy-momentum tensor of the	Systematic exposition - lecture. Examples	4 h
---	--	--------------
EMF. EMF of a point charge in arbitrary motion. Lienard- Wiechert potentials. Electric and magnetic field vectors. The field of the charge in uniform motion. Radiation field. Intensity (angular distribution) and total radiated power.	Systematic exposition - lecture. Examples	4 h
 Bibliography: C. Møller, The Theory of Relativity, Clarendon Press, 195 R. Hagedorn, Relativistic Kinematics, W.A. Benjamin, 19 J.L. Synge, Relativity: The Special Theory, Elsevier Scier C. Vrejoiu, Electrodinamica si teoria relativitatii , Editura J. D. Jackson, Classical electrodynamics , 3-rd ed. , Joh F.E. Low, Classical Field Theory. Electromagnetism and D.J. Griffiths, Introduction to Electrodynamics, 4-th ed., C. Stoica, Note de curs, in format electronic, pe site-ul de 	5 964 ace Ltd; 2nd ed. 1980 a didactica si pedagogica, Bucuresti,1 n Wiley & Sons , 1998 Gravitation Wiley-VCH Verlag 2004 Pearson, 2013 partamentului.	1993 I
8.2. Tutorials	Teaching and learning	Observations
Geometry of the Minkowski spacetime: Lorentz transformation, four-vectors, tensors, relativistic invariants. The light cone and causality.	Problem solving. Guided work. Case study. Examples.	2
Applications of Lorentz transformation relation and of relativistic formula of velocities addition. Relativistic addition of accelerations. Lorentz contraction. Stellar aberration. Thomas precession, calculation of Thomas angular velocity. Thomas factor in spin-orbit coupling. Doppler shift.	Problem solving. Guided work. Case study. Examples.	4
Motion of a particle under the action of a constant and quasielastic force. Motion of a point charge in homogeneous constant electric and magnetic fields (various cases).	Problem solving. Guided work. Case study. Examples.	3
Study of relativistic collisions / decays of particles. Conservation laws in Special Relativity: the energy- momentum four-vector. The Compton effect and the inverse Compton effect.	Problem solving. Guided work. Case study. Examples.	6
Radiation reaction. Abraham-Lorentz eq. Relativistic	Problem solving. Guided work.	3
Applications of relativistic formulas of EMF transformations in vacuum and in material media. Transformation relations of the dipole electric and magnetic moments.	Problem solving. Guided work. Case study. Examples.	6
The field of the uniform moving charge. Cherenkov effect. Bremsstrahlung. Angular distribution and the total radiated power of a point charge in arbitrary motion. The cases of uniform linear acceleration and of circular uniform motion (synchrotron radiation). Calculation of Lienard formula of the total radiated	Problem solving. Guided work. Case study. Examples.	4

power.					
Bibliography:					
 V. Novacu, Culegere de probleme de electrodinamica, Editura tehnica, Bucuresti, 1964 Alan P. Lightman, William H. Press, Richard H. Price, Saul A. Teukolsky, Problem Book in Relativity and Gravitation, Princeton University Press, 1975. Michael Tsamparlis, Special Relativity: An Introduction with 200 Problems and Solutions, Springer; 2010 					
8.3. Practicals	Teaching and learning techniques	Observations			
Bibliography:					
8.4. Project	Teaching and learning techniques	Observations			
Bibliography:					

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences and abilities which are fundamental for an undergraduate student in the field of modern physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, academic, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark		
10.4. Lecture	 - coherence and clarity of exposition -correct use of equations / mathematical methods / physical models and theories - ability to indicate / analyse specific examples 	Written test / oral examination	60%		
10.5.1. Tutorial	-ability to use specific methods for problem solving - ability to analyse the results	Homeworks/written tests	40%		
10.5.2. Practical					
10.5.3. Project					
10.6. Minimal requirements for passing the exam					
Attendance score of minimum 50% of Lectures and all Tutorial classes.					
At least 50% of exam score and 50% of total score in the final examination.					

Date 05.11.21 Teacher's name and signature Madalina Boca Practicals/Tutorials instructor(s) name(s) and signature(s) Virgil V. Baran

Date of approval 11.11.2021

Head of Department Lect.dr. Roxana Zus

DI 209F.EN Quantum mechanics I

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Departement of Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Quantum Me	chanics	I				
2.2. Teacher		Prof. Dr. Virgil Băran						
2.3. Tutorials/Practicals instructor(s) Lect. Dr. Virgil V. Băran								
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content ¹⁾	DF
	II			evaluation	Е	Classification	Type ²⁾	DI
						of course unit	51	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	2	Practicals	0	Project	0
3.2. Total hours per semester	56	distribution:	Lectures	28	Tutorials	28	Practicals	0	Project	0
3.3 Distribution of estimat	ed tin	ne for study			·		•			hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 15						15				
3.3.2. Research in library, study of electronic resources, field research10						10				
3.3.3. Preparation for practicals/tutorials/projects/reports/homework 1						15				
3.3.4. Examination 4						4				
3.3.5. Other activities										
3.4. Total hours of individual study 40							•			
3.5. Total hours per semester 100										
3.6. ECTS 4										

4. Prerequisites (if necessary)

4.1. curriculum	Real and Complex Analysis, Algebra, Differential Equations, Equations of Mathematical
	Physics, Classical mechanics, Fundamentals of Atomic Physics
4.2. competencies	Knowledge about :
	- Phenomenology of microscopic behaviour of physical systems
	- Differential and integral calculus, partial differential equations, special functions, orthogonal
	polynomials
	-Analytical formalism of classical mechanics; classical electrodynamics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Computer, Video projector
	Lecture notes
	Bibliography
5.2. for practicals/tutorials/projects	Lecture notes
	Bibliography

6. Specific competences acquired

Professional	Identify and proper use of the main physical laws and principles in a given context.
competencies	Deduction of working formulas for calculations of physical quantities using appropriate principles
	and laws of physics.
	Description of physical systems, using theories and specific tools (theoretical and experimental
	models, algorithms, schemes, etc.)
	Use of the physical principles and laws for solving theoretical or practical problems with qualified
	tutoring.
	Rigorous knowledge of quantum theory, concepts, notions and problems in this area.

	Ability to use this knowledge in various branches of physics.
Transversal	
competencies	Efficient use of sources of information and communication resources and training assistance in a foreign language. Completing professional tasks efficiently and responsibly under the law and ethics specific to the subject, under qualified guidance.

7. Course objectives

7.1. General objective	-Understanding the fundamental aspects related to the study of quantum mechanics. Training capacities to approach and solve specific problems. Developing analytics skills of calculation
7.2. Specific objectives	 Describing and understanding of specific physical theories/models for quantum systems. -Assimilation of formalism of quantum mechanics: the principles of quantum mechanics, states, observables, measurement. - Understanding the peculiar behavior of microscopic physical systems: energy quantization, nonlocality and superposition principle, incompatibility of observables and Heisenberg uncertainty principle.

8.1. Lectures [chapters]	Teaching techniques	Observations
1. The principles of quantum mechanics	Systematic exposition - lecture.	12 hours
The superposition principle of the states in quantum	Heuristic conversation. Critical	
mechanics	analysis. Examples	
The state concept in quantum mechanics. Hilbert space.	5	
Dirac bra-ket formalism.		
The physical observables in quantum mechanics.		
Hermitian operators. Eigenvalues and eigenvectors of		
Hermitian operators (discrete case). The spectral		
theorem. Eigenvalues and eigenvectors of Hermitian		
operators (continuous case).		
The measurement postulate in quantum mechanics.		
Compatible observables. Physical interpretation of		
transition amplitude. Incompatible observables.		
Heisenberg uncertainty relation. Interpretation. Position		
observable and position measurement. Linear		
momentum and momentum measurement.		
Fundamental quantum relations. Dirac approach. The		
commutator in quantum mechanics.		
The spatial translation in quantum mechanics.		
Translation operator. The generator of the translations:		
the linear momentum. Interpretation of the results of		
Stern-Gerlach experiment. The Hilbert space of the spin		
one-half systems. The spin one-half operator		
components. Commutation relations. Pauli Matrices.		
The dynamical evolution in quantum mechanics. Time		
evolution operator: properties. The Hamiltonian of a		
quantum system. Eigenvalues and eigenvectors of the		
Hamiltonian. Stationary states.		
Schrödinger equation for the evolution operator.		
Schrödinger equation for ket vectors.		
2. Coordinates representation of quantum mechanics	Systematic exposition - lecture.	4 hours
Position representation of quantum mechanics: quantum	Heuristic conversation. Critical	
wave mechanics. Physical interpretation of the wave	analysis. Examples	
function. Position and linear momentum operators in		
coordinate representation. The time-dependent		
Schrödinger equation for the wave function. The		
continuity equation of the density of probability in		

quantum mechanics. Time independent Schrodinger equation for the wave function. Physical boundary conditions and energy quantization for a system in a potential well		
3. Harmonic oscillator in quantum mechanics The harmonic oscillator in quantum mechanics. The Hamiltonian. The creation and annihilation operators (ladder operators) for harmonic oscillator. The eigenvalues and eigenvectors of the harmonic oscillator Hamiltonian. Coherent states. Definition. Basic properties. The harmonic oscillator in coordinate representation	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	4 hours
Polynomial method.		
4. The time-independent perturbation theory General discussion and setting of the problem: non- degenerate case. Zero-order approximation and first order approximation for the state ket and energy The second order correction to the ket vector and energy.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	3 hours
5. Angular momentum in quantum mechanics The orbital angular momentum. Basic definitions, commutation relations, a set of compatible observables. The ladder operators in the algebra of angular momentum. Eigenvalues and eigenvectors of the orbital angular momentum.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	5 hours
General angular momentum: definition, commutation relations. Ladder operators: definition and properties. Eigenvalues and eigenvectors of the general angular momentum.		
 J.J. Sakurai, J.J. Napolitano, Modern quantum D. H. McIntyre, Quantum mechanics. A parad L. D. Landau, E.M. Lifshitz, Quantum mech PAM Dirac, Principles of Quantum Mechanics, G W. Greiner, Quantum mechanics: an introductio L.E. Ballentine, Quantum Mechanics : A Modern Company; 2014 V. Baran, R. Zus, Lecture notes on quantum mechanics 	mechanics, Addison-Wesley, 2011 ligms approach, Pearson Education L anics, Butterworth -Heinemann, 200 Oxford, 1982 n, Springer, 2001 n Development (2nd Edition), World chanics miei, 1984	.td , 2014 3 Scientific Publishing
8.2. Tutorials	Teaching and learning techniques	Observations
Hermitian operators. Eigenvalues and eigenvectors of Hermitian operators (discrete case). The spectral theorem. Eigenvalues and eigenvectors of Hermitian operators (continuous case).	Problem solving. Guided work. Case study. Examples.	4 hours
The principles of quantum mechanics – applications.	Problem solving. Guided work. Case study. Examples.	6 hours
Applications in coordinate's representation of quantum mechanics. Infinite and finite potential well. Potential barrier. Tunneling effect.	Problem solving. Guided work. Case study. Examples.	8 hours
Harmonic oscillator in quantum mechanics – statistics of position and momentum - applications	Problem solving. Guided work. Case study. Examples.	4 hours
The time-independent perturbation theory – nondegenrate case. Applications: anharmonic oscillator, etc.	Problem solving. Guided work. Case study. Examples.	2 hours
Quantum theory of the orbital and general angular momentum - applications.	Problem solving. Guided work. Case study. Examples.	4 hours
Bibliography: J.J. Sakurai, J.J. Napolitano, Modern quantum	mechanics, Addison-Wesley, 2011	
H Micintyre Duantum mechanics A parad	unmennmonch Pearson Education I	ta 2017

- L.D.Landau, E.M.Lifshitz, Quantum mechanics, Butterworth -Heinemann, 2003
- PAM Dirac, Principles of Quantum Mechanics, Oxford, 1982
- W. Greiner, Quantum mechanics: an introduction, Springer, 2001
- N. Zettili, Quantum Mechanics Concepts and Applications, second edition, John Wiley & Sons, 2009
- V. Baran, R. Zus, Lecture notes on quantum mechanics
- R. Zus, V. Băran, V.V. Băran, A.M. Croitoru, C.Iorga, D.I. Palade, Quantum Mechanics Applications seminar notes (pdf)

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences and abilities which are fundamental for an undergraduate student in the field of modern physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, academic, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyse specific examples 	Written test/oral examination	70%
10.5.1. Tutorial	 ability to use specific problem solving methods ability to analyse the results 	Homeworks/written tests	30%
10.5.2. Practical			
10.5.3. Project			
10.6 Minimal requirements for	or passing the exam		

10.6. Minimal requirements for passing the exam

Attendance of at least 50% for the lectures and at least 70% for the tutorials.

Correct solutions to the indicated subjects for obtaining the grade 5 from all activities, part of the continuous evaluation. Correct solutions to the indicated subjects for obtaining the grade 5 within the final exam.

Date 05.11.2021

Teacher's name and signature Prof. Dr. Virgil Baran

Date of approval 11.11.2021

Practicals/Tutorials instructor(s) name(s) and signature(s) Lect. Dr. Virgil V. Baran

Head of Department Lect.dr. Roxana Zus

DI.201F.EN Electronics

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit tit	le	Electronics						
2.2. Teacher				Prof. Dr. Andrei B.	ARBO	RICA		
2.3. Tutorials/Prace	ticals ins	tructor(s)		Prof. Dr. Andrei B.	ARBO	RICA		
2.4. Year of	2	2.5.	 2.6	6. Type of	Б	2.7. Type of	Content ¹⁾	DD
study	2	Semester	eva	aluation	E	course unit	Type ²⁾	DI

¹⁾ fundamental (DF), speciality (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
2.2. Total hours per comoster	56	distribution: 1-st	0	0 2 nd somester	0
5.2. Total nours per semester	50	semester	56	0 2-ild semester	0
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					25
3.2.2. Research in library, study of electronic resources, field research				15	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks			25		
3.2.4. Preparation for exam				4	
3.2.5. Other activities				0	
3.3 Total hours of individual study	65				

3.3. Total hours of individual study	65
3.4. Total hours per semester	125
3.5. ECTS	5

4. Prerequisites (if necessary)

4.1. curriculum	Real and Complex Mathematical Analysis, Electricity and Magnetism
4.2. competencies	C2 Use of software packages for data analysis and visualization

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Course room, projector, screen
5.2. for practicals/tutorials	Lab room, experimental setups, power supplies, measurement instruments,
	oscilloscopes

6. Specific competences acquired

Professional competences	C1.2 Ability to describe physical systems, using theoretical approaches and appropriate instruments C2.4 Ability to compare the results of numerical models and simulations with literature data or experimental measurements. C4.4 Critical evaluation of the results of the implementation of physical models, including the uncertainity in experimental data. C4.5 Ability to implement, improve and extend the use of a physical model. Ability to design and implement experimental setups and devices capable of validating a physical model.
Transversal competences	CT1 Efficient and responsible fulfillment of the professional duties, while respecting the deontological laws of the domain, under qualified supervision. CT3 Efficient use of informational, communication and guided professional development resources in Romanian and another widespread foreign language.

7. Course objectives

7.1. General objective	An introduction to electronics
7.2. Specific objectives	Study of the most frequently used semiconductor devices
	Study of the basic circuits using semiconductor devices.
	An introduction to the applications of the devices and circuits.

8.1. Lecture [chapters]	Teaching techniques	Observations
Physical properties of semiconductors. Fermi-Dirac Distribution, Density of charge carriers in intrinsic semicondactors, Physical Phenomena in semiconductors, P and N tipe semiconductors, P-N Junction.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2-4 hours

Physical Phenomena in semiconductors. Continuity equation	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2-4 hours
P-N Junction. Physical phenomena at the P-N junction. Diodes. I-V characteristic of a diode	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2-4 hours
Applications of P.N. Junction		
Zener diode. Varicap diode, Photodiode, LED, Tunnel	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2-4 hours
Diode, Multi Junctions Devices (Diac, Thac, Thiristor)		
Bipolar transistor		
Currents of bipolar transistor, Static characteristics		
(Common emitter(CE), Common Base (CB)),	Systematic exposition - lecture. Heuristic	2.4 hours
Temperature Sensitivity, Static working point of CE and	conversation. Critical analysis. Examples	2-4 110u15
CB connections for bipolar transistor . Ebers-Moll		
equations		
Field affect transistor	Systematic exposition - lecture Heuristic	
IEEE MOSEET Amplifier circuits using EETs	conversation Critical analysis Examples	2-4 hours
JFE1, MOSFE1. Amplifier circuits using FE1s.	conversation. Critical analysis. Examples	
Feedback Amplifiers.	Systematic exposition - lecture. Heuristic	2-4 hours
	conversation. Critical analysis. Examples	2 4 110013
Operationa Amplifiers.	Systematic exposition - lecture. Heuristic	0.41
	conversation. Critical analysis. Examples	2-4 hours
Bibliography	conversation critical analysis, znampres	
Dibiliography. Decision DODULESCU Andre: DADDODICA In	tus du stien to Electusnica, Editure Universitatii	din Du auna ati
Razvan BOBULESCU, Andrei BARBURICA In	troduction to Electronics, Editura Universitatii	din Bucuresu,
2002.		
 P. Horowitz and W. Hill, "The art of electronics", 	2nd edition, Cambridge Unversity Press, 1994	ŀ
 Mihai P Dinca, "Electronica - Manualul studentu 	lui", vol1, Editura Universitatii din Bucuresti,	2003.
 J. COX. Fundamentals of Linear Electronics. Ed. 	Delmar, 2001	
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations
Some specific theme	Cuided work	2.4.6 hours
	Guided work	2-4-0 110015
Bibliography:		
whatever you decide to indicate		1
8.3. Practicals [practical activities, projects, etc.]	Teaching and learning techniques	Observations
1. Static characteristics of semiconductor diodes		2.41
1. Static characteristics of semiconductor diodes (Si. Ge. LED. Zener)	Guided practical activity	2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2 2 Static characteristics of bipolar transistor in	Guided practical activity	2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common omittee configuration	Guided practical activity Guided practical activity	2-4 hours 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. Static characteristics of bipolar transistor in common emitter configuration Control beneficial and the semiconductor diversion	Guided practical activity Guided practical activity	2-4 hours 2-4 hours
 Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common 	Guided practical activity Guided practical activity	2-4 hours 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration	Guided practical activity Guided practical activity Guided practical activity	2-4 hours2-4 hours2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration	Guided practical activity Guided practical activity Guided practical activity	2-4 hours2-4 hours2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope	Guided practical activity Guided practical activity Guided practical activity	2-4 hours2-4 hours2-4 hours2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope	Guided practical activity Guided practical activity Guided practical activity Guided practical activity	2-4 hours2-4 hours2-4 hours2-4 hours2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers_upregulated and regulated power supplies	Guided practical activity Guided practical activity Guided practical activity Guided practical activity	2-4 hours2-4 hours2-4 hours2-4 hours2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier	Guided practical activity	 2-4 hours 2-4 hours 2-4 hours 2-4 hours 2-4 hours 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Control is the static function	Guided practical activity	 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET	Guided practical activity	 2-4 hours 2-4 hours 2-4 hours 2-4 hours 2-4 hours 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET	Guided practical activity	 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources	Guided practical activity	 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources	Guided practical activityGuided practical activity	 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac Triac Thiristor	Guided practical activity	 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor	Guided practical activityGuided practical activity	 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor	Guided practical activityGuided practical activity	 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor Temperature dependence of semiconductor diode and	Guided practical activityGuided practical activity	 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor Temperature dependence of semiconductor diode and bipolar transistor	Guided practical activityGuided practical activity	 2-4 hours
1. Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) 2. 2. Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor Temperature dependence of semiconductor diode and bipolar transistor Bibliography:	Guided practical activityGuided practical activity	 2-4 hours
 Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor Temperature dependence of semiconductor diode and bipolar transistor Bibliography: Razvan BOBULESCU, Andrei BARBORICA In 	Guided practical activity	 2-4 hours
 Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor Temperature dependence of semiconductor diode and bipolar transistor Bibliography: Razvan BOBULESCU, Andrei BARBORICA In 2002. 	Guided practical activityGuided practical activity	 2-4 hours 3-4 hours 3-4
 Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor Temperature dependence of semiconductor diode and bipolar transistor Bibliography: Razvan BOBULESCU, Andrei BARBORICA In 2002. P. Horowitz and W. Hill "The art of electronics" 	Guided practical activity Cuided practical activity Guided practical activity Guided practical activity Cuided practical activity Guided practical activity Cuided practical a	 2-4 hours 4 hours 4 hours
 Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor Temperature dependence of semiconductor diode and bipolar transistor Bibliography: Razvan BOBULESCU, Andrei BARBORICA In 2002. P. Horowitz and W. Hill, "The art of electronics", Mihai P Dinca, "Electronica, Manualul studenty" 	Guided practical activity Cuided practical activity Guided practical activity	 2-4 hours
 Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor Temperature dependence of semiconductor diode and bipolar transistor Bibliography: Razvan BOBULESCU, Andrei BARBORICA In 2002. P. Horowitz and W. Hill, "The art of electronics", Mihai P Dinca, "Electronica - Manualul studentu 	Guided practical activity Cuided practical activity Guided practical activity Cuided practical activity Guided practical activity Cuided practical activity Guided practical activity Cuided practical a	 2-4 hours
 Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor Temperature dependence of semiconductor diode and bipolar transistor Bibliography: Razvan BOBULESCU, Andrei BARBORICA In 2002. P. Horowitz and W. Hill, "The art of electronics", Mihai P Dinca, "Electronica - Manualul studentu 	Guided practical activity Cuided practical activity Guided practical activity Teaching and learning techniques	 2-4 hours 2-3 hours 2-4 hours 3-4 hours 3-4
 Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor Temperature dependence of semiconductor diode and bipolar transistor Bibliography: Razvan BOBULESCU, Andrei BARBORICA In 2002. P. Horowitz and W. Hill, "The art of electronics", Mihai P Dinca, "Electronica - Manualul studentu 8.4. Project 	Guided practical activity Cuided practical activity Guided practical activity Cuided practical activity Guided practical activity Cuided practical activity Guided practical activity Teaching and learning techniques	 2-4 hours 3-4 hours 3-4
 Static characteristics of semiconductor diodes (Si, Ge, LED, Zener) Static characteristics of bipolar transistor in common emitter configuration Static characteristics of bipolar transistor in common base configuration The oscilloscope Rectifiers, unregulated and regulated power supplies. Voltage multiplier. Static characteristics of JFET Static characteristics of MOSFET Constant current, constant voltage sources Diac, Triac, Thiristor Temperature dependence of semiconductor diode and bipolar transistor Bibliography: Razvan BOBULESCU, Andrei BARBORICA In 2002. P. Horowitz and W. Hill, "The art of electronics", Mihai P Dinca, "Electronica - Manualul studentu 8.4. Project N/A Bibliography: 	Guided practical activity Troduction to Electronics, Editura Universitatii 2nd edition, Cambridge Unversity Press,1994 ui", vol1, Editura Universitatii din Bucuresti, Teaching and learning techniques	 2-4 hours 3-4 hours 3-4

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit forms/develops basic theoretical and practical competencies and abilities in the field of electronics, which are fundamental for an undergraduate student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, secondary school teaching, see e.g. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-071j-introduction-to-electronics-signals-and-measurement-spring-2006/calendar/).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark			
10.4. Lecture	- coherence and clarity of exposition	Written test/oral examination				
	- correct use of					
	equations/mathematical					
	methods/physical models and theories					
	- ability to indicate/analyze specific					
	examples					
10.5.1. Tutorials	N/A	N/A				
10.5.2. Practicals	- ability to use specific experimental methods/apparatus	Lab reports				
	- ability to perform/design specific					
	experiments					
	- ability to present and discuss the					
	results					
10.5.3. Project [only if	N/A	N/A				
included in syllabus]						
10.6. Minimal requirements for	or passing the exam					
80% of the practical activities must be finalized, mark 5 for the lab examination						
Requirements for mark 5 (10 points scale)						
A mimimum grade of 5 for the lab examination						
Answering the theoretical exam questions and solving the exercises with grade 5						

Date 2.11.2021

Teacher's name and signature Prof. Dr. Andrei BARBORICA Practicals/Tutorials instructor(s) name(s) and signature(s) Prof. Dr. Andrei BARBORICA

Date of approval 11.11.2021

Head of Department Conf.dr. Adrian Radu

DI.211F.EN Nuclear Physics

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	Nuclear Physics	
2.2. Teacher		Prof. dr. Mihaela Sin

				Prof. dr. Ionel La	azanu			
				Conf. dr. Oana F	Ristea			
2.3. Tutorials/Practicals instructor(s)			Conf. dr. Oana Ristea, Asist. Drd. Mihaela Parvu					
2.4. Year of study 2 2.5. Semester 2			2.6. Type of	Е	2.7.	Content ¹⁾	DS	
_				evaluation		Classification	2)	DI
						of course unit	Type 29	DI

1) fundamental (DF), specialty (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	0	Practicals	2	Project	0
3.2. Total hours per semester	56	distribution:	Lectures	28	Tutorials	0	Practicals	28	Project	0
3.3 Distribution of estimated time for study how								hours		
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 35							35			
3.3.2. Research in library, study of electronic resources, field research							10			
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks							20			
3.3.4. Examination 4							4			
3.3.5. Other activities 0							0			
3.4. Total hours of individual study 65							·			
3.5. Total hours per semester 125										
3.6. ECTS 5										

4. Prerequisites (if necessary)

4.1. curriculum	The equations of mathematical physics, physics of the atom and molecule
4.2. competencies	Knowledge of mathematics, atomic physics, programming languages and numerical methods,
	etc.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia devices (video)
5.2. for practicals/tutorials/projects	Nuclear Physics Laboratory equipped with radioactive isotopic sources,
	radiation detectors (gas, scintillators, semiconductors detectors), spectroscopic
	chains, multichannel analyzers, radiation monitors

6. Specific competences acquired

Professional	C1: Identification and appropriate use of main physical laws and principles in a given context.
competencies	C1.1 : Deduction of working formulas for calculations of physical quantities using appropriate
	principles and laws of physics.
	C1.2: description of physical systems, using theories and specific tools (theoretical and
	experimental models, algorithms, schemes, etc.)
	C1.3 : Applying the principles and laws of physics in problem solving theoretical or practical, in
	terms of qualified assistance.
	C1.4 : Correct application of methods of analysis and criteria for the selection of appropriate solutions to achieve specified performance
	C3: Troubleshooting the physical conditions required using numerical and statistical methods
	C3.1: Use adequate data analysis and processing of numerical methods specific physics and
	mathematical statistics
	C3.3: Linking problematic methods of statistical analysis to date (to obtain measurements /
	calculations, data processing, interpretation).
	C 3.4 : Evaluating the reliability of results and comparing them to bibliographic data or theoretical values calculated using statistical methods validation and / or numerical methods
Transversal	
competencies	Developing scientific tranking and reasoning based on: induction, deduction, experimental design,
	Applying the techniques of multidisciplinary team working on various hierarchical levels
	Effective use of information sources and communication resources and training assistance, both in
	Romanian and in a foreign language
	rearrant and the rearrant and and rear

7. Course objectives

7.1. General objective	Presenting the fundamentals of nuclear physics and applications in various
	fields.
7.2. Specific objectives	Understanding the specific aspects of the physics at subatomic and subnuclear
	scale
	Ability to operate with these concepts and phenomena.
	Development of experimental skills specific to the field.
	Knowledge of the the structure and specific models for nuclei decays.
	Understanding of the specificity experiments search of the structure,
	elementarity and fundamental interactions of matter.
	Understanding main classes of applications in everyday life.

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
Introduction: purpose and role of subatomic physics;	Systematic exposition - lecture.	4 hours
historic steps in discovering the structure of matter and	Heuristic conversation. Critical	
the fundamental constituents.	analysis. Examples	
The intrinsic properties of the atomic nucleus: size,	Systematic exposition - lecture.	8 hours
radius, density, binding energy, mass, electric charge,	Examples	
spin, parity, magnetic moment and quadrupole moments		
Nuclear stability: binding energy, separation energy, the	Systematic exposition - lecture.	4 hours
liquid drop model and semi-empirical mass formula.	Heuristic conversation. Examples	
Radioactive decay: activity, half-time, the law of		4 hours
radioactive decay.		
Disintegration processes: alpha, beta, gamma decay;	Systematic exposition - lecture.	8 hours
emitting nuclei, decay heat, energy spectra, decay series;	Heuristic conversation Critical	
applications.	analysis. Examples	

Bibliography:

1. A Das and T. Ferbel, Introduction to Nuclear and Particle Physics, World Scientific, Second edition, 2005

2. Raymond Serway, Clement Moses, Curt Moyer, Modern Physics, Third Edition, Thomson Books/Cole, 2005 (13

Nuclear structure, 14 Nuclear physics applications, 15 Elementary particles; other only by selection)

3. http://hyperphysics.phy-astr.gsu.edu/hbase/HFrame.html

4. http://ocw.mit.edu/OcwWeb/Nuclear-Engineering/22-101Fall-2006/LectureNotes/index.htm

5. K Heyde, Basic Ideas and Concepts in Nuclear Physics (An Introduction approach) (Graduate student series in

physics, Series Editor: Douglas F Brewer), IOP Publishing Ltd, Second edition 1999

6. K. Gottfried, V. Weisskopf Concepts of particle physics Clarendon Press, 1984

7. Brian R Martin, Nuclear and Particle Physics – An Introduction, 2nd_Edition, 2009

8. WR Leo, Techniques for nuclear and particle physics experiments, 2nd Edition Springer-Verlag , 1994

9. <u>http://ocw.mit.edu/courses/nuclear-engineering/22-55j-principles-of-radiation-interactions-fall-2004/lecture-notes/</u> 10. Electronic support of the course

10. Manuale scrise de membrii Catedrei de Fizica atomica si nucleara, autori diferiti, diferite editii

11. Fizica nucleara – Culegere de probleme (Catedra de fizica atomica si nucleara), Editura All, 1994

12 Îndrumător de laborator, Catedra de Fizică atomică și nucleară, Ed.Univ. București, diverse ediții

8.2. Tutorials	Teaching and learning techniques	Observations
Bibliography:		

8.3. Practicals	Teaching and learning techniques	Observations
1.Dosimetry	Guided practical activities	8x2 hours
2. Experimental study of the probabilistic nature of the	-	
processes of radioactive decays		

3. The study of the interactions of alpha particles in air							
4. The absorption of the beta particles in various							
materials							
5. Bakscattering of the beta particles							
6. Gamma atenuation in different materials							
7. Gamma spectroscopy							
8. Determination of the activity of a gamma ray source							
Statistical analysis of experimental data in nuclear	Guided work	6 hours					
physics							
Nuclear electronic elements and set-ups used in nuclear							
physics lab							
Problems		4 hours					
Examination		2 hours					
Bibliography:							
1.Electronic Lab Guide							
2. Fizica nucleara – Culegere de probleme (Catedra de fiz	2. Fizica nucleara – Culegere de probleme (Catedra de fizica atomica si nucleara), Editura All, 1994						
3. Lucrari practice de Fizica nucleara, Îndrumător de labor	rator, Colectivul Catedrei de Fizică at	omică și nucleară, Ed.					
Univ. București, 1987							
4. Bazele Fizicii nucleare, Lucrari practice, Indrumător de	laborator, Colectivul Catedrei de Fiz	ică atomică și nucleară,					
Ed. Univ. București, 2003							
5. 1000 solved problems in Modern Physics, A. Kamal, Sp	oringer-Verlag, 2010						
6. Problems and solutions on Atomic, Nuclear and Particle	e Physics, YK. Lim, World Scientific	c, 2000					
8.4. Project	Teaching and learning	Observations					
	techniques	Observations					
Bibliography:							

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops theoretical and practical competences and abilities which are fundamental for an undergraduate student in the field of modern Physics, corresponding to national and international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (University of Oxford https://www.ox.ac.uk/admissions/undergraduate/courses-listing?wssl=1, University of Parma https://www.difest.unipr.it/it/didattica/laurea-triennale-fisica/calendario-didattico, Universitatea Padova, https://www.difest.unipd.it/didattica/2015/SC1158/2014). The contents are in line with the requirements/expectations of

the main employers of the graduates (industry, research, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in
5 51		methods	final mark
10.4. Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyse specific examples 	Oral examination	60%
10.5.1. Tutorial			
10.5.2. Practical	 ability to use specific experimental methods/apparatus ability to perform/design specific experiments ability to present and discuss the results 	Lab reports	40%

	- ability to use specific problem			
	solving methods			
	- ability to analyse the results			
10.5.3. Project				
10.6. Minimal requirements for	or passing the exam			
Correct understanding of the concepts and phenomena, the ability to work with them and obtain accurate numerical				
results on topics imposed.				
Requirements for mark 5 (10 points scale)				
Completion of all laboratory and minimal 5 score to the examination of the knowledge of the laboratory				
The correct answers to the subjects indicated to obtain the score 5 at the final exam.				

Date of approval 11.11.2021

Head of Department Prof. Dr. Alexandru Jipa

DI 212F.EN Thermodynamics and Statistical Physics

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Thermodyna	Thermodynamics and Statistical Physics					
2.2. Teacher				Conf. Dr. Alexa	ndru N	icolin		
2.3. Tutorials/Practicals instructor(s)			Conf. Dr. Alexandru Nicolin					
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DF
	II		4	evaluation	E	Classification	2)	DI
						of course unit	Type 29	DI

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	6	distribution:	Lectures	3	Tutorials	3	Practicals	0	Project	0
3.2. Total hours per semester	84	distribution:	Lectures	42	Tutorials	42	Practicals	0	Project	0
3.3 Distribution of estimat	ed tin	ne for study					•			hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 12							12			
3.3.2. Research in library, study of electronic resources, field research 12						12				
3.3.3. Preparation for practicals/tutorials/projects/reports/homework 1/						13				
3.3.4. Examination 4						4				
3.3.5. Other activities										
3.4. Total hours of individual study 37										
3.5. Total hours per semester 125										
3.6. ECTS 5										

4. Prerequisites (if necessary)

4.1. curriculum	Real and Complex Analysis, Algebra, Differential Equations, Molecular Physics
4.2. competencies	Knowledge about:
	- Phenomenology of microscopic behavior of physical systems
	- Differential and integral calculus, differential equations, special functions
	- Molecular physics
	- Computer programming

5. Conditions/Infrastructure (if necessary)

(in necessary)			
5.1. for lecture	Computer, Video projector		
	Lecture notes		
	Bibliography		
5.2. for practicals/tutorials/projects	Lecture notes		
	Bibliography		

6. Specific competences acquired

Professional	Identify and proper use of the main physical laws and principles in a given context.
competencies	Deduction of working formulas for calculations of physical quantities using appropriate principles and
	laws of physics.
	Description of physical systems, using theories and specific tools (theoretical and experimental models,
	algorithms, schemes, etc.)
	Use of the physical principles and laws for solving theoretical or practical problems with qualified
	tutoring.
	Ability to use this knowledge in various branches of physics.
Transversal	
competencies	Efficient use of sources of information and communication resources and training assistance in a
	foreign language.
	Completing professional tasks efficiently and responsibly under the law and ethics specific to the
	subject, under qualified guidance.

7. Course objectives

7.1. General objective	Presentation of the general notions and methods of the neo-gibbsian			
	thermodynamics; presentation of the general concepts and the fundamental			
	applications of the classical and quantum statistical mechanics.			
7.2. Specific objectives	- Presentation of the entropic and energetic thermodynamical representations.			
	- General discussion of the thermodynamic equilibrium conditions.			
	- Presentation of the principal properties of phase transitions.			
	- Presentation of the most important equilibrium statistical ensembles: micro-			
	canonical, canonical and grand-canonical (in classical and quantum variants).			
	- Presentation of some approximation methods in statistical mechanics.			
	- Deduction of the specific properties of the phase transitions using methods of			
	statistical mechanics.			
	- Discussion of the specific properties of the ideal quantum gases.			
	- Presentation of selected methods of computational statistical physics			

8.1. Lectures [chapters]	Teaching techniques	Observations
Fundamental problems of the neo-gibbsian thermodynamics	Systematic exposition - lecture. Examples	3 hours
Thermodynamic representations	Systematic exposition - lecture. Examples	3 hours
Thermodynamic coefficients and Conditions for thermodynamic equilibrium	Systematic exposition - lecture. Examples	3 hours
Phase transitions	Systematic exposition - lecture. Examples	3 hours
The fundamentals of the classical statistical mechanics	Systematic exposition - lecture. Examples	3 hours

The fundamentals of the quantum statistical mechanics	Systematic exposition - lecture. Examples	3 hours
Equilibrium statistical ensembles	Systematic exposition - lecture. Examples	9 hours
Special topics of the classical statistical mechanics	Systematic exposition - lecture. Examples	7 hours
Special topics of the quantum statistical mechanics	Systematic exposition - lecture. Examples	8 hours
 Bibliography: J.M. Yeomans, Statistical mechanics of phase tra K. Huang, Introduction to statistical physics, CR K. Huang, Lectures on statistical physics and pro K. Binder, D.W. Heermann, Monto Carlo simulation 	nsitions, Clarendon Press, 1992 C Press, 2013 otein folding, World Scientific 2005 tion in statistical physics: An introdu	ction, Springer, 2010
8.2. Tutorials	Teaching and learning techniques	Observations
Mathematical complements for thermodynamics	Theoretical presentation and problem solving	3 hours
Thermodynamics of neutral fluid	Theoretical presentation and problem solving	4 hours
Thermodynamics of van der Waals gas	Theoretical presentation and problem solving	4 hours
Thermodynamics of thermal radiation	Theoretical presentation and problem solving	1 hours
Mathematical complements for classical and quantum statistical mechanics	Theoretical presentation and problem solving	3 hours
Micro-canonical statistical ensemble	Theoretical presentation and problem solving	3 hours
Canonical statistical ensemble	Theoretical presentation and problem solving	3 hours
Grand-canonical statistical ensemble	Theoretical presentation and problem solving	3 hours
Ideal quantum gases	Theoretical presentation and problem solving	3 hours
Special topics of computational statistical mechanics: Ising and Ising-like models	Theoretical presentation and problem solving	3 hours
Bibliography:		

- D.A.R. Dalvit, J. Frastai, I. Lawrie, Problems on statistical mechanics, CRC Press, 1999
- Y.-K. Lim, Problems and solutions on thermodynamics and statistical mechanics, World Scientific, 1990
- J.M. Yeomans, *Statistical mechanics of phase transitions*, Clarendon Press, 1992
- K. Huang, Introduction to statistical physics, CRC Press, 2013

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences and abilities which are fundamental for an undergraduate student in the field of modern physics, corresponding to national and European/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, academic, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyze specific examples 	Written test/oral examination	50%

	-			
10.5.1. Tutorial	- ability to use specific problem	Homework/written tests	50%	
	solving methods			
	- ability to analyze the results			
10.5.2. Practical				
10.5.3. Project				
10.6. Minimal requirements for passing the exam				
Attendance of at least 50% for the lectures and at least 70% for the tutorials.				
Correct solutions to the indicated subjects for obtaining the grade 5 from all activities, part of the continuous evaluation.				
Correct solutions to the indicated subjects for obtaining the grade 5 within the final exam.				
Date	Teacher's name and signature	Practicals/Tutorials instructor(s)	

05.11.2021	Conf. Dr. Alexandru Nicolin	Conf. Dr. Alexandru Nicolin
Date of approval		Head of Department
11.11.2021		Lect.dr. Roxana Zus

DI 214F.EN Research Activity

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics,
	Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit tit	le	Research activi	ty						
2.2. Teacher									
2.3. Tutorials/Prac	ticals ins	tructor(s)			Conf.dr. Va	asile I	Bercu		
2.4. Year of	2	2.5.	п	2.6	. Type of	v	2.7. Type of course	Content ¹⁾	DS
study	2	Semester		eva	luation	v	unit	Type ²⁾	DI

¹⁾ fundamental (DF), speciality (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

2.1 Hours can a solt in consideration		distribution:		Tutorials/		
3.1. Hours per week in curriculum		Lecture		Practicals		
2.2. Total hours per comester	00	distribution:		Tutorials/		
5.2. Total hours per semester	90	Lecture		Practicals		
Distribution of estimated time for study	/					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						
3.2.2. Research in library, study of electronic resources, field research					4	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					3	
3.2.4. Examination					3	
3.2.5. Other activities						
3.3. Total hours of individual study	7					
3.4. Total hours per semester	100	1				

3.5. ECTS 4

4. Prerequisites (if necessary)

4.1. curriculum	Cover the courses from the first and the second year
4.2. competences	Knowledge of mathematics, physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for practicals/tutorials	Laborator

6. Specific competences acquired

Professional competences	C1- Identify and make appropriate use of the main laws and principles of physics, in a given context. C4 – Carry out basic experiments in physics by using specific laboratory equipment. C5 – Analize and communicate basic scientific, educational and popular information on physics.
Transversal competences	CT3- Efficient use of trousted sources of scientific information and profficient communication of scientific data in English

7. Course objectives

7.1. General objective	To present the basic concepts of the field and to familiarize the students with the specific aspect of a research activity
7.2. Specific objectives	 - Understandig the specific aspects and the ability to work with different phenomena; - Developing the capacity to work within a research team using laboratory equipment. -Development of experimental skills specific to the field.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
Recommended lectures:		
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations
	Teaching and learning techniques	Observations
8.3. Practicals [practical activities, projects, etc.]	Teaching and learning techniques	Observations
In agreement with the subject chosen for research activity	Guided practical activity	90 hours
Recommended lectures:		
It is to be specified for the chosen topic, by the supervisin rules and initial training seminars for students	ng teacher and the practice coord	inator; includes labor protection
8.4. Project [only if included in syllabus]	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The discipline meets the current requirements for the development of practical skills at national and international level in higher education. The internships will be carried out in the institutes. The companies with which the Faculty of Physics has concluded internship agreements. The targeted fields of activity are multiple, the possible targeted employers being both from the research-development environment and from other fields.

10. Assessment

Activity type	10.1 Assessment criteria	10.2. Assessment	10.3. Weight in final
Activity type	10.1. Assessment criteria	methods	mark
10.2 Tutorials			0-100%
10.2 Tutoriais			(if applicable)
10.5.2. Practicals	- evaluation of the experimental skills	Internship / activity	100 %
	acquired in the laboratory activity	report	
	- evaluation of the capacity for		
	analysis and interpretation of		

	experimental results					
10.6. Minimal requirements for passing the exam						
The final examination is conditional on the completion of all planned activities and takes into account the observations /						
proposals of the practice coord	proposals of the practice coordinator.					
Requirements for mark 5 (10 points scale)						
 Mandatory attendance at all activities included in the internship portfolio 						
 Preparation of the Activity Report, following the internship 						
• Learning the main notions, methods, techniques.						
Requirements for mark 10 (10 points scale)						
 Skills, well-argued knowledge 						
• Demonstrated ability to analyze phenomena and processes						
Personal approach and interp	pretation					

Date 05.10.2021 Teacher's name and signature Practical instructor, name(s) and signature(s) Conf.dr. Vasile BERCU

Date of approval 11.11.2021

Head of Department, Prof.dr. Alexandru Jipa

DI 301F.EN Quantum mechanics II

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Departement of Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Quantum Me	chanics	II					
2.2. Teacher				Prof. Dr. Virgil Baran					
2.3. Tutorials/Practicals	instru	ictor(s)		Lect. Dr. Virgil	V. Bara	n			
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DF	
	3		5	evaluation	E	Е	Classification of course unit	Type ²⁾	DI

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum4distribution:Lectures2Tutorials2Practicals0Project							0			
3.2. Total hours per	56	distribution:	Lectures	28	Tutorials	28	Practicals	0	Project	0
semester									5	
3.3 Distribution of estimated time for study								hours		
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography								20		
3.3.2. Research in library, study of electronic resources, field research								15		
3.3.3. Preparation for practicals/tutorials/projects/reports/homework								30		
3.3.4. Examination							4			
3.3.5. Other activities										
3.4. Total hours of individual study 65										
3.5. Total hours per semes	ter			1	25					

3.6. ECTS 5		
	3.6. ECTS	5

4. Prerequisites (if necessary)

4.1. curriculum	Real and Complex Analysis, Algebra, Differential Equations, Equations of Mathematical
	Physics, Classical mechanics, Fundamentals of Atomic Physics, Quantum Mechanics I
4.2. competencies	Knowledge about :
	- Phenomenology of microscopic behaviour of physical systems
	- Differential and integral calculus, partial differential equations, special functions, orthogonal
	polynomials
	-Analytical formalism of classical mechanics; classical electrodynamics
	-Principles of quantum mechanics, representations of Quantum Mechanics, angular momentum
	in Quantum Mechanics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Computer, Video projector
	Lecture notes
	Bibliography
5.2. for practicals/tutorials/projects	Lecture notes
	Bibliography

6. Specific competences acquired

of opecane compete	
Professional	Identify and proper use of the main physical laws and principles in a given context.
competencies	Deduction of working formulas for calculations of physical quantities using appropriate principles
	and laws of physics.
	Description of physical systems, using theories and specific tools (theoretical and experimental
	models, algorithms, schemes, etc.)
	Use of the physical principles and laws for solving theoretical or practical problems with qualified
	tutoring.
	Rigorous knowledge of quantum theory, concepts, notions and problems in this area.
	Ability to use this knowledge in various branches of physics.
Transversal	Efficient use of sources of information and communication resources and training assistance in a
competencies	foreign language.
	Completing professional tasks efficiently and responsibly under the law and ethics specific to the
	subject, under qualified guidance.

7. Course objectives

7.1. General objective	-Understanding the fundamental and advanced aspects related to the study of quantum
	mechanics. Training capacities to approach and solve specific problems. Developing
	analytics skills of calculation.
7.2. Specific objectives	- Describing and understanding of specific physical theories/models for quantum systems.
	-Assimilation of formalism of quantum mechanics
	- Understanding the peculiar behavior of microscopic physical systems (inlcuding identical
	particles).
	-Acquire the skills to describe and calculate the physical properties of quantum systems.

8.1. Lectures [chapters]	Teaching techniques	Observations
1. Theory of rotations in Quantum Mechanics	Systematic exposition - lecture.	4 hours
The rotation operator. The angular momentum operator as the	Heuristic conversation. Critical	
generator of rotations. Wigner functions: physical interpretation.	analysis. Examples	
Systems of spin ¹ / ₂ particles. The Pauli formalism.		
2. The addition of angular momenta	Systematic exposition - lecture.	5 hours
The quantum mechanical description of combination of two	Heuristic conversation. Critical	
physical systems.	analysis. Examples	
Two spin one-half systems. General discussion. Maximal sets of		
mutually compatible observables. Possible bases in the Hilbert		
space of total system.		
The formal theory of angular momentum addition. Clebsch-		

Gordon coefficients. Interpretation. Basic properties of Clebsch-				
Gordon coefficients.				
Recursion relations for Clebsch-Gordan coefficients. Clebsch-				
Gordan series. Addition of orbital angular momentum with the				
spin one-half angular momentum. Spherical tensors. Definition.				
Products of spherical tensor operators. Wigner-Eckart theorem.				
3. Kepler problem in quantum mechanics	Systematic exposition - lecture.	4 hours		
Formulation of the problem. System of compatible observables.	Heuristic conversation. Critical			
Coordinates representation of time independent Schrodinger	analysis. Examples			
equation. Coulomb potential. Eigenvalues and eigenvectors for				
hydrogen atom.				
4. The time-independent perturbation theory – degenerate	Systematic exposition - lecture.	3 hours		
case	Heuristic conversation. Critical			
Perturbation theory for the degenerate case.	analysis. Examples			
Variational method for ground state and excited states. Ritz				
approach.				
5. Particle motion in a magnetic field. The Pauli equation	Systematic exposition - lecture.	4 hours		
The Hamiltonian of a charged particle in the electromagnetic	Heuristic conversation. Critical			
field. The Schrodinger equation. The Bohr-Proconiu magneton.	analysis. Examples			
The Pauli equation The vector potential in quantum mechanics				
The gauge invariance in quantum mechanics Bohm-Abaronov				
affect Modern Applications: Landau levels and integral quantum				
Hall offact				
6. Systems of identical particles in quantum mechanics	Systematic expectition lecture	1 hours		
The principle of identity of like particles in microscopic world:	Houristic conversation Critical	4 110015		
and a degeneracy	analysis Examples			
Permutation on evolution and anticommetrication	analysis. Examples			
Permutation operator; symmetrization and antisymmetrization				
operators for systems of two identical particles. The				
symmetrisation postulate: bosons and fermions. The state ket for a				
system of three bosons. Slater determinants. Systems of two				
electrons. Fock space.				
7.Theory of time-dependent perturbations	Systematic exposition - lecture.	4 hours		
Schrödinger, Heisenberg and interaction (Dirac) pictures of	Heuristic conversation. Critical			
quantum mechanics.	analysis. Examples			
Time evolution operator: definition, properties, Dyson				
perturbative expansion for time evolution operator. Transition				
amplitude. Transition probability. Step pertubation and Fermi's				
golden rule for transition rate. The case of a periodic				
perturbation:stimulated electromagnetic transitions.				
Dipole approximation. The scattering theory. The scattering				
amplitude and cross section. The perturbative approach and the				
relation with time-dependent perturbation theory.				
Bibliography:				
J.J. Sakurai, J.J. Napolitano, Modern quantum mechani	cs, Addison-Wesley, 2011			
D. H. McIntyre, Quantum mechanics. A paradigms app	proach, Pearson Education Ltd , 202	14		
L.D.Landau, E.M. Lifshitz, Quantum mechanics, Bu	itterworth -Heinemann, 2003			
PAM Dirac, Principles of Quantum Mechanics, Oxford, 1	1982			
• W. Greiner, Quantum mechanics: an introduction, Spring	er, 2001			
 L.E. Ballentine, Quantum Mechanics : A Modern Development (2nd Edition). World Scientific Publishing 				
Company; 2014		- 0		
• V. Baran, R. Zus. Lecture notes on auantum mechanics				
 A. Messiah, Quantum Mechanics. Dover Publications 19 	99			
 S. Titeica. <i>Mecanica Cuantica</i>. Editura Academiei, 1984 	4			
8 2 Tutorials	Teaching and learning			
	techniques	Observations		
Canaral theory of angular momentum (commutation relations	Droblem colving Cuided work	2 hours		
rotations, etc.)	Case study Examples	∠ nouis		
Functions, etc.)	Case study. Examples.	2 1		
Systems of spin ⁴ 2 particles - applications	Problem solving. Guided work.	∠ nours		
	Case study. Examples.			

spin ½ and 1.	Case study. Examples.	
Addition of orbital angular momentum with the spin one-half		
angular momentum.		
Hydrogen atom. Applications	Problem solving. Guided work.	4 hours
	Case study. Examples.	
The time-independent perturbation theory – degenerate case.	Problem solving. Guided work.	3 hours
Applications: Stark effect etc.	Case study. Examples.	
Quantum dynamics of particles in the electromagnetic field. Pauli	Problem solving. Guided work.	4 hours
equation – applications: Landau levels, Zeeman effect and	Case study. Examples.	
Quantum Hall effect.		
Systems of identical particles in quantum mechanics – problems	Problem solving. Guided work.	3 hours
and applications	Case study. Examples.	
Theory of time-dependent perturbations – applications	Problem solving. Guided work.	4 hours
	Case study. Examples.	

Bibliography:

- J.J. Sakurai, J.J. Napolitano, Modern quantum mechanics, Addison-Wesley, 2011
- **D** . **H** . **McIntyre** , *Quantum mechanics*. A paradigms approach, Pearson Education Ltd , 2014
- L.D.Landau, E.M. Lifshitz, Quantum mechanics, Butterworth -Heinemann, 2003
- PAM Dirac, Principles of Quantum Mechanics, Oxford, 1982
- W. Greiner, Quantum mechanics: an introduction, Springer, 2001
- N. Zettili, Quantum Mechanics Concepts and Applications, second edition, John Wiley & Sons, 2009
- V. Baran, R. Zus, Lecture notes on quantum mechanics

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences and abilities which are fundamental for an undergraduate student in the field of modern physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, academic, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyse specific examples ability to apply the gained knowledge to solve specific prolems (angular momentum coupling, Hydrogen atom, Stark effect, Zeeman effect, etc.) 	Written test/oral examination	70%
10.5.1. Tutorial	 ability to use specific problem solving methods ability to analyse the results 	Homeworks/written tests	30%
10.5.2. Practical			
10.5.3. Project			

10.6. Minimal requirements for passing the exam

Attendance of at least 50% for the lectures and at least 70% for the tutorials.

Correct solutions to the indicated subjects for obtaining the grade 5 from all activities, part of the continuous evaluation. Correct solutions to the indicated subjects for obtaining the grade 5 within the final exam.

Requirements for getting mark 10 (10 points scale)

• Correct answer to all the subjects indicated for obtaining grade 10

• Skills, well-argued knowledge

[•] R. Zus, V. Băran, V.V. Băran, A.M. Croitoru, C.Iorga, D.I. Palade, Quantum Mechanics – Applications – seminar notes (pdf)

Date 05.11.2021 Teacher's name and signature Prof. Dr. Virgil Baran

Date of approval 11.11.2021

Head of Department Lect.dr. Roxana Zus Practicals/Tutorials instructor(s) name(s) and signature(s) Lect. Dr. Virgil V. Baran

DI.302F.EN Molecular Physics

	tudy program
ucharest	. University
ics	2. Faculty
Matter Structure, Atmospheric and Earth Physics,	3. Department
	4. Field of study
Bachelor of Science	5. Course of study
lish)	5. Study program
	7. Study mode
ucharest ics Matter Structure, Atmospheric and Earth Physics, Bachelor of Science lish)	L. University Faculty Faculty Field of study Course of study Study program Study mode

2. Course unit

2.1. Course unit title		Molecular P	hysics					
2.2. Teacher			Conf.dr. Vasi	le Berc	cu			
2.3. Tutorials/Practicals instructor(s) Conf.dr. Vasile Bercu								
2.4. Year of study		2.5. Semester		2.6. Type of		2.7. Classification	Content ¹⁾	DF
	2		Ι	evaluation	Е	of course unit	Type ²⁾	DI
							51	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

	•	,								
3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	1	Practicals	1	Project	-
3.2. Total hours per	56	distribution:	Lectures	28	Tutorials	14	Practicals	14	Project	_
semester										
3.3 Distribution of est	imated	time for study								hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						20				
3.3.2. Research in library, study of electronic resources, field research							15			
3.3.3. Preparation for practicals/tutorials/projects/reports/homework							30			
3.3.4. Examination							4			
3.3.5. Other activities							-			
3.4. Total hours of individual study 65										
3.5. Total hours per semester					125					
3.6. ECTS					5					

3.6. ECTS

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of Atomic Physics, Quantum mechanics, Real and Complex analysis, Equations
	of Mathematical Physics
4.2. competencies	Knowledge of Atomic Physics, Quantum mechanics and Mathematics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Amphitheater equipped with multimedia devices (video)
5.2. for practicals/tutorials/projects	Laboratory with experimental set up for atomic and molecular physics
	experiments

	Computers
•	

6. Specific compete	ences acquired
Professional	C1: Identification and appropriate use of main physical laws and principles in a given context.
competencies	C2: Use of software for analysis and data processing.
	C3: Troubleshooting the physical conditions required using numerical and statistical methods
	C4: Applying knowledge in the field of physics both in concrete situations from related fields as well
	as in experiments, using standard laboratory equipment
	C5: Communication and analysis of didactic, scientific and dissemination of information
	C6: Interdisciplinary approach to physics topics.
Transversal competencies	CT1- Achievement of the professional duties in an efficient and responsible way with compliance with deputological logiclation specific to the domain under qualified assistance.
competencies	CT2: Effective use of information sources and communication resources and training assistance, both
	in Domanian and in a foreign language

7. Course objectives

7.1. General objective	Assimilation of theoretical and experimental foundations of phenomena related to the atomic and molecular physics
7.2. Specific objectives	Familiarization with the fundamental concepts and models in the field of atomic and molecular physics; Acquiring scientific methods of analysis; Description and understanding of mathematical methods associated with the field of atomic and molecular physics;
	Developing the ability to quantitatively analyze specific cases and to interpret the fundamental phenomena in the field; Development of the ability to apply appropriate numerical models for modeling phenomena from the atomic and molecular level; Development of experimental skills and acquisition of the main principles used in atomic and molecular physics.

8.1. Lectures [chapters]	Teaching techniques	Observations
The Schrödinger equation for one-electron	Systematic exposition -	2 hours
atoms	lecture. Heuristic	
- the atomic orbitals and the energy levels	conversation. Critical	
	analysis. Examples	
Alkali metal atoms	Systematic exposition -	2 hours
- dipole approximation	lecture. Critical analysis.	
- the energy levels		
One-electron atoms in external magnetic field	Systematic exposition -lecture.	2 hours
-the Zeeman effect	Heuristic conversation.	
The electron spin in one electron atom	Systematic exposition -lecture.	1 hours
- the total wave function and the energy levels	Heuristic conversation.	
Many-electron atoms	Systematic exposition -	4 hours
-systems of fermions, the wave function, the	lecture.Examples.	
Pauli principle		
- the He atom		
- the central field approximation		
- the Hartree-Fock theory, the self consistent		
field method		
- electronic configuration and the Mendeleev		
table		
The Born Oppenheimer approximation	Systematic exposition -	6 hours
- the H ₂ ⁺ molecular ion, the H ₂ hydrogen molecule	lecture. Heuristic	
- molecular orbital calculation for H ₂	conversation.	
Molecular orbitals of polyatomic molecules	Systematic exposition -	5 hours
- the Huckel method	lecture. Critical	
- the Valence electron approximation	analysis. Examples	
- Molecular orbital hybridization		

	1						
Hartree Fock LCAO method for polyatomic	Systematic exposition -	6 hours					
molecules							
- Electronic configuration and molecular geometry in the							
ground state	ground state						
Bibliography:							
- Physics of Atoms and Molecules, B. H. Bransden si C. J	. Joachain, Bucuresti, 1998						
- Fizica atomica- Vol II, V. Spolschi, Editura Tehnica, 195	3						
- Molecular spectroscopy, Ira N. Levine, New York ; John	Wiley & Sons, 1975						
- Atkins' physical chemistry - Peter Atkins, Julio de Paula,	Oxford University Press, 2010						
- Introduction to quantum mechanics : with applications to	chemistry, Linus Pauling and E. Bri	ght wilson, New York ;					
McGraw-Hill Book Company, 1935	P. Colthur I or more of H. Doly or d	Ctophon F Micharles					
- Introduction to initiated and Raman spectroscopy Norma	an B. Connup, Lawrence H. Daiy and	i Stephen E. wiberiey,					
New YOFK ; Academic Press, 1964	particles Debort Martin Fishers and	Debert Deepick Nov					
- Quantum physics of atoms, molecules, somus, nuclei and	particles Robert Martin Elsberg and	Robert Resilick, New					
The physics of stome and guarta t introduction to experi	monte and theory Uakon Hormann	alf Hang Christoph					
- The physics of atoms and quanta : introduction to experi-	ments and meory maken, mermann w	von, Hans Chinstoph					
9.2 Tutoviale	Teaching and learning	1					
0.2. I UIOFIAIS	techniques	Observations					
Drinciples of molecular exectroscopy and data	Example Droblems	2 hours					
processing architecture and principles of entirel	Cuided work						
processing: architecture and principles of optical	Guided work						
spectrometers, spectral lines and physical meanings of							
Associated parameters	Example Droblems	6 hours					
Symmetry of molecules. Point groups of symmetry.	Example. Problems.	6 nours					
Symmetry elements and operations. Photon absorption	Guided work						
Identification of the encetral signature and stamic	Example Problems	2 hours					
configuration for AP, molecules (CO, group in	Example. Problems.	2 nours					
configuration for AB_3 molecules (CO ₃ group in	Guided work						
carbonates) from the IR spectra using irreducible							
Determination of the C. I. molecule configuration from	Example Problems	2 hours					
the Deman spectra using the group theory	Cuided work	2 110015					
Numerical methods for polystomic molecules: UE	Guided work	2 hours					
numerical methods for polyatomic molecules: HF	Example. Problems.	2 nours					
Bibliography							
Divilography. Division of Atoms and Moloculus, B. H. Bransdon si C. J. Joachain, Bucurosti, 1998							
- Physics of Atoms and Molecules, B. H. Bransden si C. J. Joachain, Bucuresti, 1998							
- FIZICA diolifica- vol II, v. Spoiscili, Euliura Tellifica, 195 Molocular spectroscopy, Ira N. Loving, New York : John	Wilow & Song 1075						
- Moleculai Speciloscopy, Italii. Leville, New Tork, John	Oxford University Press 2010						
- Introduction to quantum mechanics : with applications to	chemistry I inus Pauling and F Bri	abt Wilson New Vork ·					
McGraw-Hill Book Company 1935	Chemistry, Linus Fauling and E. Di	giit wiisoli, ivew fork,					
- Introduction to infrared and Raman spectroscopy Norma	an B. Colthun, Lawrence H. Daly and	Stephen F. Wiberley					
New York · A cademic Press 1964	an D. Connup, Lawrence II. Dary and	i Stephen E. Wiberiey,					
- Quantum physics of atoms molecules solids nuclei and	narticles Robert Martin Fisherg and	Robert Resnick New					
- Quantum physics of atoms, molecules, solids, nuclei and particles Robert Martin Elsberg and Robert Resmick, New Vork - John Wilow & Song 1974							
TOR, JUIN VILLY & JUIN, 17/4 The physics of atoms and quanta : introduction to experiments and theory Uaken, Hermann Welf, Hens Christenh							
- The physics of atoms and quanta . Introduction to experiments and theory makeli, merinalin word, mails Christophi Barlin: Springer 1994							
9.2 Denoticals Determination of the specific charge of Teaching and learning							
the electron	techniques	Observations					
Determination of the the spin-orbit interaction	Guided practical activities	2 hours					
energy and ontical transition probabilities for Na							
atoms							
HCl molecule: extraction of the rotation-vibration Cuided practical activities 4 hours							
parameters from molecular spectra of diatomic		· IIOuIS					
molecules							
The Zeeman effect: magnetic resonance spectroscopy	Guided practical activities	4 hours					
Spectra of multielectronic atoms: He Hg	Guided practical activities	4 hours					
Bibliography		- 110u15					
Diologiaphy. Fizica atomica : lucrari practica : coloctiv de autori: Elona Dorca, et al Tinegrafia Universitatii din Ducuresti 1004							
- Fizica atomica : lucrari practice , colectiv de autori: Elena Borca, et al fipografia Universitatii din Bucuresti, 1984							

- Lucrari practice de fizica atomica, care se gasesc pe site-ul : http://brahms.fizica.unibuc.ro/atom/LabAtom.php

- Fizica atomica: note de curs, Florin Popescu si Florin Marica ; Ars Docendi, 1998

- Physics of Atoms and Molecules, B. H. Bransden si C. J. Joachain, Bucuresti, 1998

- Fizica atomică - Vol I, V. Spolschi, Editura Tehnica, 1953

- Atkins' physical chemistry - Peter Atkins, Julio de Paula, Oxford University Press, 2010

- Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- and Quantum Physics -Wolfgang Demtröder Springer; 2nd ed. 2010

- Quantum physics of atoms, molecules, solids, nuclei and particlesRobert Martin Eisberg and Robert Resnick, New York ; John Wiley & Sons, 1974

- The physics of atoms and quanta : introduction to experiments and theory Haken, Hermann Wolf, Hans Christoph Berlin; Springer, 1994

8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit forms/develops some theoretical and/or practical competences and abilities which are fundamental for an undergraduate student in the field of modern Physics, corresponding to national and European/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in
Activity type 10.4. Lecture	 10.1. Assessment criteria coherence and clarity of exposition correct use of equations/ mathematical methods/physical models and theories ability to indicate/analyses specific examples ability to solve course-specific practical problems 	methods Continuous Evaluation a) Partial examination of theoretical knowledge: written and oral b) Answers and activity during the lectures c) Final examination of theoretical knowledge: written and oral For online assessment, the subjects will be electronically sent via Google Classroom / Microsoft Teams, and during the exam students will have their video camera turned on, the exam being	final mark 30% 5% 30%
10.5.1. Tutorial	- ability to use specific problem	recorded. Homework and answers	10 %
	solving methods - ability to analyses the results	during the tutorials	
10.5.2. Practical	 ability to use specific experimental methods/apparatus ability to perform/design specific experiments ability to present and discuss the results 	Colloquium examination	25%
10.5.3. Project			

10.6. Minimal requirements for passing the exam

Attendance at least 50% of the number of class hours and compulsory attendance at all laboratory and tutorials meetings. To obtain minimum the mark 5 from evaluation criteria.

Requirements for mark 5 (10 points scale)

Demonstrate conceptual understanding of fundamental principles of atomic and molecular physics.

Know the notions related to atomic orbitals and energy levels in the hydrogen-like atom and using these notions in solving specific applications.

Correct understanding of the notions related to the dipole approximation of the core potential for alkali metals and the effect of an external magnetic field on a hydrogen like atom energy levels.

Correct understanding of the consequences of electron spin on the energy structure of hydrogen like atom and solving specific applications.

Knowing how to to apply Pauli's principle and use different approximations for the multi-electron atom;

Correct understanding of notions related to atomic configurations, terms and energy of multi-electron atoms and solving specific applications.

Correct understanding of the notions related to the Born Oppenheimer approximation and the consequences on simple molecules.

Know how to apply different methods in calculating the orbitals of molecules.

Know how to use the fundamental concept of molecular physics in applications.

DateTeacher's name and signaturePracticals/Tutorials instructor(s)4.11.2021Conf. dr. Vasile Bercuname(s) and signature(s)Conf. dr. Vasile BercuConf. dr. Vasile Bercu

Date of approval 11.11.2021

Head of Department Prof.dr. Alexandru Jipa

DI.303F.EN Solid State Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Solid State P	hysics					
2.2. Teacher			Prof.dr. Daniela	Drago	man			
2.3. Tutorials/Practicals instructor(s)			Conf.dr. George	Conf.dr. George-Alexandru Nemneş				
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content ¹⁾	DS
	3		5	evaluation	E	Classification of course unit	Type ²⁾	DI

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	5	distribution:	Lectures	3	Tutorials	1	Practicals	1
3.2. Total hours per semester	70	distribution:	Lectures	42	Tutorials	14	Practicals	14
3.3 Distribution of estimated time for study							hours	
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						35		
3.3.2. Research in library, study of electronic resources, field research						35		
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks						31		
3.3.4. Examination						4		
3.3.5. Other activities						-		

3.4. Total hours of individual study	101
3.5. Total hours per semester	175
3.6. ECTS	7

4. Prerequisites (if necessary)

4.1. curriculum	Courses: Electricity and magnetism, Quantum Mechanics I, Equations of mathematical physics,
	Electrodynamics and Relativity theory, Thermodynamics and Statistical mechanics
4.2. competencies	Abilities of Computational Physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (videoprojector, PC)
5.2. for practicals/tutorials/projects	Seminar room/specific laboratory infrastructure

6. Specific competences acquired

Professional	Proper identification and use of basic laws, notions and principles specific for condensed matter
competencies	physics
	Solving physics problems under given circumstances
	Performing Physics experiments using standard lab equipment and evaluating the results based on
	theoretical models
	Applying creatively the acquired knowledge toward understanding and modeling the processes and
	physical properties of condensed matter
	Communication and analysis of scientific information in physics
	Using specific software packages for data analysis and processing
Transversal	Efficient use of information sources and communication and training resources in an international
competencies	language
	Accomplishing professional tasks in an efficient and responsible manner by abiding to legislation
	and specific ethical and deontological rules, under supervised assistance

7. Course objectives

7.1. General objective	Knowledge of phenomena and specific physical properties of condensed matter
7.2. Specific objectives	Study of crystalline structures and their symmetry properties
	Study of atoms' dynamics in crystals – phonons, thermodynamic properties
	Study of the electronic energy spectrum in crystalline solids
	Study of transport phenomena
	Presentation at each studied topic of the corresponding applications and of
	problems that allow students to understand the phenomena and to develop a
	creative thinking, essential for solving practical problems

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations			
Crystalline structures. Symmetry elements. Reciprocal lattice. X-ray diffraction	Systematic exposition - lecture. Examples	9 hours			
Basic notions of crystal binding	Systematic exposition - lecture. Examples	3 hours			
Lattice oscillations. Acoustical and optical phonons. Phononic heat capacity	Systematic exposition - lecture. Examples	9 hours			
Electron dynamics. Tight-binding model. Electronic band structure. Classification of solids	Systematic exposition - lecture. Examples	6 hours			
Statistics of charge carriers in metals, intrinsic and extrinsic semiconductors. Electronic specific heat	Systematic exposition - lecture. Examples	6 hours			
Kinetics of charge carriers in solids. Boltzmann formalism. Relaxation time approximation. Electrical conductivity	Systematic exposition - lecture. Examples	6 hours			
Charge transport in magnetic field. Hall effect. Magnetoresistance.	Systematic exposition - lecture. Examples	3 hours			
Bibliography: I. Licea, Fizica corpului solid (Editura Universitătii din Bucuresti, Bucuresti, 1991).					

• I. Licea, Fizica corpului solid (Editura Universității din București, București, 1991).

- Ch. Kittel, Introduction to Solid State Physics (8th ed., John Wiley & Sons, New York, 2004).
- Y.M. Galperin, Introduction to Modern Solid State Physics (CreateSpace Publishing Platform, 2014),
- https://folk.uio.no/yurig/fys448/f448pdf.pdf.
- N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt College, Fort Worth, USA, 1976)

D. Dragoman, Note de curs (pdf)

Di Diagonian, riote de caro (pui)		-
8.2. Tutorials	Teaching and learning	Observations
	icenniques	
Crystalline structures. Symmetry properties, X-ray	Theoretical exposition. Problem	3 hours
diffraction	solving	
Lattice vibrations. Dispersion laws. Density of	Theoretical exposition. Problem	3 hours
oscillations	solving	
Electronic structure of crystalline solids. Density of	Theoretical exposition. Problem	3 hours
states; dimensionality effects	solving	
Electrical conductivity in the relaxation time	Theoretical exposition. Problem	2 hours
approximation. Applications	solving	
Electrical conductivity in the relaxation time	Theoretical exposition. Problem	3 hours
approximation in magnetic fields. Applications	solving	

Bibliography:

I. Licea, Fizica corpului solid (Editura Universității din București, București, 1991).

Ch. Kittel, Introduction to Solid State Physics (8th ed., John Wiley & Sons, New York, 2004).

• Y.M. Galperin, Introduction to Modern Solid State Physics (CreateSpace Publishing Platform, 2014), https://folk.uio.no/yurig/fys448/f448pdf.pdf.

- N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt College, Fort Worth, USA, 1976)
- D. Dragoman, Note de curs (pdf)

8.3. Practicals	Teaching and learning techniques	Observations	
Crystallography	Guided practical activity	2 hours	
X-ray diffraction		2 hours	
Electrical conduction in metals. Temperature dependence of resistivity	Guided practical activity	2 hours	
Electrical conduction in semiconductors. Bandgap determination	Guided practical activity	2 hours	
Hopping mechanism of electrical conduction	Guided practical activity	2 hours	
Hall effect	Guided practical activity	2 hours	
Magnetoresistive effect	Guided practical activity	2 hours	
Bibliography:			
 C. Berbecaru, L. Ion, Fizica solidului – Caiet de l 	ucrări de laborator		
C. Kittel, Introduction to Solid State Physics (8th	ed., John Wiley & Sons, New York,	2004).	
8.4. Project	Teaching and learning	Observations	
Not Applicable	techniques	Observations	
Bibliography:			

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The course content is in agreement with the content of similar courses taught at national and international universities, such as University Babeş-Bolyai, Cluj Napoca, University "Alexandru Ioan Cuza", Iași and, respectively, University of Groningen, Netherlands, Warwick University, UK, University of Tubingen, Germany, Technical University Wien, Austria, etc. The course forms abilities and competences to analyze specific phenomena of condensed matter physics, to plan and execute specific experiments, and toidentify applications of acquired knowledge. These competences and abilities are in line with the requirements/expectations of the main employers of graduate students (research institutes in material physics, industry, secondary school teaching).

10. Assessment			
Activity type	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in

		methods	final mark
10.4. Lecture	Clarity, coherence and concision of	Written exam	60%
	exposition;		
	Proper use of physical models and		
	mathematical formalism;		
	Capacity of exemplification;		
	Capacity to apply the acquired		
	knowledge to problem solving.		
10.5.1. Tutorial	Application of specific solving	On-going evaluation;	20%
	methods for a given problem	solving of given homeworks	
10.5.2. Practical	Proper use of physical models and	Lab colloquium	20%
	mathematical formalism;	_	
	Knowledge of specific experimental		
	techniques and instrumentation		
10.5.3. Project	Not applicable	Not applicable	Not applicable
10.6. Minimal requirements for	or passing the exam		
Attendance at all practical and	d tutorial activities and mark 5 at the corre	esponding evaluations	
Solving of selected subjects for	or mark 5 at the final written exam		
L			

Date 06.11.2021	Teacher's signature Prof.dr. Daniela Dragoman	Practicals/Tutorials instructor's signature Conf.dr. George Alexandru Nemneş
Date of approval		Head of Department

Date of approval 11.11.2021

DI.304F.EN Particle Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

Conf.dr. Adrian Radu

2. Course unit

2.1. Course unit title		Particle Phys	Particle Physics					
2.2. Teacher				Prof. dr. Mihaela Sin				
Prof. dr. Ionel Lazanu								
2.3. Tutorials/Practicals instructor(s)			Conf. dr. Oana Ristea, Asist. Drd. Mihaela Parvu					
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DS
	3		1	evaluation	Е	Classification	Tupo ²⁾	ח
						of course unit	Type	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	1	Practicals	1	Project	0
3.2. Total hours per semester	56	distribution:	Lectures	28	Tutorials	14	Practicals	14	Project	0
3.3 Distribution of estimated time for study						hour				
						S				
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						55				

3.3.2. Research in library, study of electronic resources, field research			15
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks			20
3.3.4. Examination			4
3.3.5. Other activities			0
3.4. Total hours of individual study			
3.5. Total hours per semester 150			
3.6. ECTS 5			

4. Prerequisites (if necessary)

n'i rerequisites (in neee	55a ()
4.1. curriculum	The equations of mathematical physics, physics of the atom and molecule
4.2. competencies	Knowledge of mathematics, physics atomic, programming languages and numerical methods,
	etc.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Amphytheatre equipped with multimedia devices (video)
5.2. for practicals/tutorials/projects	Radioactive isotopic sources, experimental set up for nuclear spectroscopy,
	radiation detectors (gas, scintillators, semiconductors detectors), multichannel
	analyzers, radiation monitors

6. Specific competences acquired

Professional	C1: Identification and appropriate use of main physical laws and principles in a given context.
competencies	C1.1: Deduction of working formulas for calculations of physical quantities using appropriate
	principles and laws of physics.
	C1.2: description of physical systems, using theories and specific tools (theoretical and
	experimental models, algorithms, schemes, etc.)
	C1.3 : Applying the principles and laws of physics in problem solving theoretical or practical, in
	terms of qualified assistance.
	C1.4 : Correct application of methods of analysis and criteria for the selection of appropriate
	solutions to achieve specified performance
	C3: Troubleshooting the physical conditions required using numerical and statistical methods
	C3.1: Use adequate data analysis and processing of numerical methods specific physics and
	mathematical statistics
	C3.3: Linking problematic methods of statistical analysis to date (to obtain measurements /
	calculations, data processing, interpretation).
	C 3.4: Evaluating the reliability of results and comparing them to bibliographic data or theoretical
	values calculated using statistical methods validation and / or numerical methods
Transversal	
competencies	CT2: Applying the techniques of effective multidisciplinary team working on various hierarchical
	levels.
	CT3: Effective use of information sources and communication resources and training assistance, both
	in Romanian and in a foreign language.

7. Course objectives

7.1. General objective	Presenting the fundamentals of nuclear and elementary particle physics and possible applications in various fields.
7.2. Specific objectives	Understanding the specific aspects of the physics at subatomic and subnuclear scale Ability to operate with these concepts and phenomena. Development of experimental skills specific to the field. Knowlege of the the structure and specific models for nuclei decays. Understanding of the specificity experiments search of the structure, elementarity and fundamental interactions of matter.
	Understanding main classes of applications in everyday life.

8.1. Lectures [chapters]	Teaching techniques	Observations
Revision on the static properties of nuclei; the need for	Systematic exposition -	2 hours

modeling of nuclear structure.	lecture. Heuristic				
	conversation. Critical				
Classes of models for the nuclear structure: collective models	Systematic exposition -	6 hours			
models of independent particles, unified models. Illustrations:	lecture. Examples	0 nouis			
the nuclear Fermi gas model, nuclear shell models, Bohr model	r				
Mottelshon; Comparing the predictions of the nuclear models					
with the experimental results; defficiences of the models of the					
nuclear structure; ways of developing the nuclear structure					
models.					
Nuclear forces: experimental basis; types of interactions,	Systematic exposition -	4 hours			
properties; properties of nuclear forces.	lecture. Heuristic				
	conversation. Critical				
Models for nuclear decays	Systematic exposition -	6 hours			
	lecture Heuristic	0 nours			
	conversation Examples				
Nuclear reactions: definitions, classification criteria;	Systematic exposition -	4 hours			
conservation laws; kinematics of the nuclear reactions.	lecture. Heuristic				
Mechanisms of reaction.	conversation Examples				
Elementary particles: classification criteria,	Systematic exposition -	4 hours			
specific quantum numbers. Experimental methods for	lecture. Critical analysis.				
determining the mass and the life time. Elementarity concept.	Examples				
Fundamental Interactions. Symmetries. Naive quark model and					
color concept. The standard model. Higgs boson.	Custometic curectitica	2 hours			
Applications of Nuclear Physics in different areas of file.	Systematic exposition -	2 nours			
Bibliography:	lecture. Examples				
1 A Das and T Ferbel Introduction to Nuclear and Particle Physic	cs World Scientific Second	edition 2005			
2. Raymond Serway, Clement Moses, Curt Moyer, Modern Physic	cs, Third Edition, Thomson B	ooks/Cole, 2005 (13			
Nuclear structure, 14 Nuclear physics applications, 15 Elementary	particles; other only by selec	ction)			
3. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/HFrame.html</u>					
4. http://ocw.mit.edu/OcwWeb/Nuclear-Engineering/22-101Fall-2	006/LectureNotes/index.htm				
5. K Heyde, Basic Ideas and Concepts in Nuclear Physics (An Introduction approach) (Graduate student series in physics,					
Series Editor: Douglas F Brewer), IOP Publishing Ltd, Second edition 1999					
6. K. Gottfried, V. Weisskopf Concepts of particle physics Clarence	lon Press, 1984				
7. Brian R Martin, Nuclear and Particle Physics – An introduction 8. WP Loo, Techniques for nuclear and particle physics experiment	l, 200_Edition, 2009	lag 1001			
9 http://ocw.mit.edu/courses/nuclear-engineering/22-55i-principle	alls, 211d Edition Springer-ver	1394			
10 Fizica nucleara – Culegere de probleme (Catedra de fizica ator	mica și nucleara) Editura All	1994			
11. Gh.Vlăducă – Elemente de Fizică nucleară – vol.I. II. Tipograf	fia (Editura) Universității din	Bucuresti, 1988, 1990			
12. K.N.Muhin – Fizică nucleară experimentală – vol.I, II, Editura	a Tehnică, București, 1981, 19				
13. R.Ion-Mihai, M.L.Ion – Introducere în Fizica nucleară – Editu	ra Universității din București	, 2003			
14. Colectiv catedră – Fizică nucleară. Lucrări de laborator – Tipo	grafia Universității din Bucu	rești, 1982, 1986			
15. M.Sin (editor) – Bazele Fizicii nucleare. Lucrări de laborator -	- Editura Universității din Bu	curești, 2003			
16. C. Beșliu, Al.Jipa – Modele de structură nucleară și mecanism	e de recație – Editura Univers	sității din București, 2002			
8.2. Tutorials	Teaching and learning	Observations			
Elements of electronic used in nuclear physics lab: temporal	Guided work	6 hours			
coincidences in nuclear experiments	Guidea work	0 110013			
Detectors. General Properties. Detector types. Methods for	Guided work	4 hours			
processing the signal.					
Problems	Guided work	2 hours			
Bibliography:					
1. Fizica nucleara – Culegere de probleme (Catedra de fizica atom	ica si nucleara), Editura All,	1994			
2. Lucrari practice de Fizica nucleara, Indrumător de laborator, Co	olectivul Catedrei de Fizică at	omică și nucleară, Ed.			
Univ. București, 1987	en Celestia-i Catal di U	:			
Б. Баzeie Fizicii nucleare, Lucrari practice, indrumator de laborate	or, Colectivul Catedrel de Fiz	ica atomica și nucleara,			
4 1000 solved problems in Modern Physics A Kamal Springer-	Verlag, 2010				

5. Problems and solutions on Atomic, Nuclear and Particle Physics, YK. Lim, World Scientific, 2000				
8.3. Practicals	Teaching and learning techniques	Observations		
1. Activation law	Guided practical activities	7x2 hours		
2. Moderation of neutrons				
3. Determination of half-life of radionuclides from beta decay				
curves				
4. Beta spectroscopy and internal conversion				
5. The method of gamma-gamma delayed coincidence for				
activity measurements. Determination of life time for excited				
nuclear states.				
6. Moessbauer Effect. Determination of some parameters of				
nuclear structure				
7. Identification of elementary particles and their interactions				
Examination		2 hours		
Bibliography:				
1. Fizica nucleara – Culegere de probleme (Catedra de fizica atom	ica si nucleara), Editura All,	1994		
2. Lucrari practice de Fizica nucleara, Îndrumător de laborator, Co	olectivul Catedrei de Fizică at	omică și nucleară, Ed.		
Univ Bucurosti 1987		-		

3. Bazele Fizicii nucleare, Lucrari practice, Indrumător de laborator, Colectivul Catedrei de Fizică atomică și nucleară, Ed. Univ. București, 2003

4. 1000 solved problems in Modern Physics, A. Kamal, Springer-Verlag, 2010

5. Problems and solutions on Atomic, Nuclear and Particle Physics, Y.-K. Lim, World Scientific, 2000

8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit forms/develops some theoretical and/or practical competences and abilities which are important/fundamental/something else for an undergraduate student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union străinătate (University of Oxford

https://www.ox.ac.uk/admissions/undergraduate/courses-listing?wssl=1, University of Parma

http://www.difest.unipr.it/it/didattica/laurea-triennale-fisica/calendario-didattico, Universitatea Padova,

http://en.didattica.unipd.it/didattica/2015/SC1158/2014). The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, secondary school teaching).

10. Assessment

A ctivity type	10.1 Accomment criteria	10.2. Assessment	10.3. Weight in
Activity type	10.1. Assessment cinena	methods	final mark
10.4. Lecture	- coherence and clarity of exposition	Oral examination	60%
	- correct use of equations/mathematical		
	methods/physical models and theories		
	- ability to indicate/analyse specific examples		
10.5.1. Tutorial	- ability to use specific problem solving methods	Homeworks/written	10%
	- ability to analyse the results	tests	
10.5.2. Practical	- ability to use specific experimental	Lab reports	30%
	methods/apparatus		
	- ability to perform/design specific experiments		
	- ability to present and discuss the results		
10.5.3. Project			
10.6. Minimal requir	rements for passing the exam		

Correct understanding of the concepts and phenomena, the ability to work with them and obtain accurate numerical

results on topics imposed. Requirements for mark 5 (10 points scale) Completion of all laboratory and minimal 5 score to the examination of the knowlege of the laboratory The correct answers of the subjects indicated to obtain the score 5 at the final exam.

Date 08.11.2021	Teacher's name and signature Prof. dr. Mihaela Sin Prof. dr. Ionel Lazanu	Practicals/Tutorials instructor(s) Conf.dr. Oana Ristea Asist. Drd. Mihaela Parvu
Date of approval 11.11.2021	He Prof.	ad of Department Dr. Alexandru Jipa

DI.305F.EN Spectroscopy and Lasers

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma, Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	Spectroscopy	y and Las	sers				
2.2. Teacher	2. Teacher		Associated Professor Gruia Ion				
				Associated Professor Ionita Iulian			
2.3. Tutorials/Practicals instructor(s) Associated Professor Gruia Ion							
			Associated Profe	essor Io	onita Iulian		
2.4. Year of study	2.5. Semester		2.6. Type of		2.7.	Content 1)	DS
II	[V	evaluation	Е	Classification	T 2)	DI
					of course unit	1 ype 29	DI

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	Х	Practicals	2	Project	Х
3.2. Total hours per	56	distribution	Locturos	28	Tutoriale	v	Practicals	70	Droject	v
semester	50	uistiibuttoii.	Lectures	20	Tutoriais	Л	Flacticals	20	riojeci	Λ
3.3 Distribution of estimated time for study how						hours				
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 15					15					
3.3.2. Research in library, study of electronic resources, field research 1					10					
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks						15				
3.3.4. Examination 4					4					
3.3.5. Other activities X					Х					
3.4. Total hours of individual study 40										
3.5. Total hours per semester 1			00							
3.6. ECTS 4										

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis, Optics, Electricity, Molecular Physics, Fundamentals of Atomic Physics,
	Quantum mechanics
4.2. competencies	Physical data processing and numerical methods

5. Conditions/Infrastructure (if necessary)

	57
5.1. for lecture	Multimedia equipped class (videoprojector)

	Lecture notes Recommended bibliography
5.2. for practicals/tutorials/projects	Laboratory of Atomic Spectroscopy with spectral instruments and computers. Laboratory of Lasers.

6. Specific competences acquired

Professional	C1 - Identification and appropriate use of main laws and principles of physics in a
competencies	given context.
	C3 - Solving problems of physics in imposed conditions, using numerical and
	statistical methods
	C4 – Applying knowledge from the field of physics both in concrete situations
	from related fields, as well as in some experiments, using the standard laboratory
	equipment.
	C5 - Communication and analysis of information with didactic, scientific and
	popularization character in the field of physics.
Transversal	CT1 – Achievement of professional tasks in efficient and responsible way with the compliance of
competencies	ethics legislation specific to the field, under qualified assistance.
	CT2 - Application of efficient working techniques in multidisciplinary team on different hierarchical
	levels
	CT3 - Efficient use of information sources and of resources of communication and formation in a
	foreign language

7. Course objectives

vi douise objectives	
7.1. General objective	Knowledge of fundamental phenomena of spectroscopy and lasers physics,
	understanding of operation of both spectral instruments and lasers.
7.2. Specific objectives	- Study of spectral terms and of mono and divalent atom spectra. study of
	different laser types.
	- Highlighting of essential issues at each topic in order to undertstand the
	involved phenomena and to develop an creative and correct thinking mode.

8.1. Lectures [chapters]	Teaching techniques	Observations
Why spectroscopy? Space science based on spectroscopy (Sun, Earth, Mars, Exoplanets). Terminology in spectroscopy. Energy levels, spectral terms, atomic states, wavelength, wavenumber, spectral line, spectral bands, spectral linewidth, continuum spectrum, line spectrum.	Systematic exposition - lecture. Critical analysis. Examples	1 hour
Spectral instruments with dispersion (prism or diffraction grating). Optical components. Spectrographs. Monochromator. Characteristics.	Systematic exposition - lecture. Examples	2 hours
Bohr model of atom. Bohr Postulates and consequences. Spectral series of Hydrogen atom and like Hydrogen atoms. Continuos spectrum of Hydrogen. Correspondence Principle.	Systematic exposition - lecture. Critical analysis. Examples	2 hours
Bohr-Sommerfeld model of atom. Spectral term of fundamental state of atom.	Systematic exposition - lecture. Examples	2 hours
Spectral terms of excitated atoms. Spin-orbit interaction.	Systematic exposition - lecture. Examples	2 hours
Spectra of alkali metal ions.	Systematic exposition - lecture. Examples	2 hours
Zeeman effect. Lorentz theory of normal Zeeman effect. Quantum theory of Zeeman effect.	Systematic exposition - lecture. Examples	2 hours
Applied Spectroscopy in life quality control: food, drinks, health (diagnostics, therapy, drugs), air, soil, water, construction materials, textiles etc.	Systematic exposition - lecture. Examples	1 hour
Laser radiation and its properties. Interaction between radiation and matter. Einstein coefficients. Light propagation in a medium, absorption, diffusion, optical	Systematic exposition - lecture. Critical analysis. Examples	2 hours

gain.		
Conditions for laser operation. First condition of	Systematic exposition - lecture.	6 hours
operation – high density of radiation using resonant	Examples	
optical cavity. Finding out of second condition of	_	
operation – population inversion using optical pumping.		
More than two levels necessity for continuous operation.		
Pumping methods. Optical pumping. Pumping by		
atomic/molecular collissions. Optical cavity and		
oscillating modes. Laser amplification. Laser gain.		
Types of lasers and their characteristics.		
Three-level system. Ruby laser. Energy levels,	Systematic exposition - lecture.	2 hours
transitions, building up, properties. Four-level system.	Examples	
Advantage versus three-level system. Neodymium laser.		
Energy levels, transitions, building up, properties.		
He-Ne laser. Pumping, Energy levels, transitions,	Systematic exposition - lecture.	2 hours
building up, properties.	Examples	2 Hours
Ionic lasers. Argon laser. Metallic vapor laser. Molecular	Systematic exposition - lecture.	
lasers. Carbon dioxide laser. Semiconductor laser.	Examples	
Principles of operation, properties. Tunable lasers. Dye	_	2 hours
laser, excimer laser, color centers laser, semiconductor		
lasers. Applications of lasers		

Bibliography:

1. Iulian Ionita, "Condensed matter optical spectroscopy", CRC Press, 2014.

2. H. E. White, "Introduction to atomic spectra", McGraw-Hill Book Company, New York and London, 1934.

3. M. Csele, "Fundamentals of light sources and lasers" (Wiley, 2004)

8.2. Tutorials	Teaching and learning techniques	Observations
Х	X	Х
Bibliography:		
8.3. Practicals	Teaching and learning techniques	Observations
Laboratory presentation	Guide activity	2 hours
Prism based spectral instruments	Guided practical activity	2 hours
Difraction gratting based spectral instruments	Guided practical activity	2 hours
Balmer series of Hydrogen atom	Guided practical activity	2 hours
Zeeman effect of Cadmium ion	Guided practical activity	2 hours
Atomic emission spectra obtained by electric arc	Guided practical activity	2 hours
discharge.		
UV-Vis Spectrophotometry	Guided practical activity	2 hours
Study and alignement of a He-Ne laser	Guided practical activity	2 hours
Analyses and characterization of active media of lasers.	Guided practical activity	2 hours
Study and characterization of diode lasers (808.5 nm)	Guided practical activity	2 hours
Study of solid state laser Nd:YAG	Guided practical activity	2 hours
Analyses of longitudinal modes	Guided practical activity	2 hours
Study of CO2 laser	Guided practical activity	2 hours
Colloquy	Knowledge testing	2 hours
Bibliography: Laboratory Guides		
8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some practical competences and abilities which are important for an undergraduate student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, secondary school teaching - National Institute for Laser, Plasma and Radiation Physics., National Institute of Materials Physics, National Institute for Opto-Electronics, IOR, Apel Laser SRL).

10. Assessment

Activity type	10.1 Assessment criteria	10.2. Assessment	10.3. Weight in			
Activity type	10.1. Assessment criteria	methods	final mark			
10.4. Lecture	coherence and clarity of exposition	Final written evaluation:	50%			
	- correct use of equations, spectral	Test of theoretical				
	and laser methods, physical models	knowledge and applied				
	(Bohr, Zeeman) and theories	problems.				
	- ability to indicate/analyse specific	Continue evaluation	20%			
	examples of practical applications of					
	spectrometry and lasers.	Attendance	10%			
10.5.1. Tutorial	X					
10.5.2. Practical	- ability to use specific experimental	Evaluation by practical test	20%			
	methods/apparatus (spectrometer,					
	laser, spectral lamp)					
	- Applying specific methods of					
	solving the given problem;					
	- Results interpretation;					
10.5.3. Project	X	X	Х			
10.6. Minimal requirements for passing the exam						
Mandatory attendance: 50% from lectures and all practicals completed.						
At least mark 5 at the end of e	At least mark 5 at the end of evaluation.					

Date 29.10.2021	Teacher's name and signature Assoc. Prof. Ion Gruia Assoc. Prof. Iulian Ionita	Practicals/Tutorials instructor(s) name(s) and signature(s) Assoc. Prof. Ion Gruia Assoc. Prof. Julian Jonita
Date of approval 11.11.2021	L	Head of Department Lecturer Dr. Roxana Zus

DI 312F.EN Research Activity

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit tit	le	Research activit	ty					
2.2. Teacher								
2.3. Tutorials/Practicals instructor(s)		Conf.dr. V	asile I	Bercu				
	3		II		V		Content ¹⁾	DS
2.4. Year of	2.5.	2.6. Type of	2.7. Type of course	Type ²⁾	וח			
----------------	----------	--------------	---------------------	--------------------	----			
study	Semester	evaluation	unit	Type				
1) (1 () ()					-			

¹⁾ fundamental (DF), speciality (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum		distributi on: Lecture		Tutorials/ Practicals		
3.2. Total hours per semester	60	distributi on: Lecture	Tutorials/ Practicals			
Distribution of estimated time for study						ırs
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						
3.2.2. Research in library, study of electronic resources, field research					8	
3.2.3. Preparation for practicals/tutoria	als/project	s/reports/hon	neworks		6	
3.2.4. Examination					3	
3.2.5. Other activities						
3.3. Total hours of individual study 12						

3.4. Total hours per semester	75
3.5. ECTS	3

4. Prerequisites (if necessary)

4.1. curriculum	Cover the courses from the first and the second year
4.2. competences	Knowledge of mathematics, physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for practicals/tutorials	Laborator

6. Specific competences acquired

Professional competences	C1- Identify and make appropriate use of the main laws and principles of physics, in a given context. C4 – Carry out basic experiments in physics by using specific laboratory equipment. C5 – Analize and communicate basic scientific, educational and popular information on physics.
Transversal competences	CT3- Efficient use of trousted sources of scientific information and profficient communication of scientific data in English

7. Course objectives

7.1. General objective	To present the basic concepts of the field and to familiarize the students with the specific aspect of a research activity
7.2. Specific objectives	 - Understandig the specific aspects and the ability to work with different phenomena; - Developing the capacity to work within a research team using laboratory equipment. -Development of experimental skills specific to the field.

8.1. Lecture [chapters]	Teaching techniques	Observations
Recommended lectures:		
		1
8.2 Tutorials [main themes]	Teaching and learning	Obcorrections
	techniques	Observations
	Teaching and learning	Obcomunitions
	techniques	Observations
8.3. Practicals [practical activities, projects, etc.]	Teaching and learning techniques	Observations
In agreement with the subject chosen for research activity	Guided practical activity	60 hours
Recommended lectures:		

It is to be specified for the chosen topic, by the supervising teacher and the practice coordinator; includes labor protection							
rules and initial training seminars for students							
8.4. Project [only if included in syllabus]	Teaching and learning techniques	Observations					
Bibliography:							

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The discipline meets the current requirements for the development of practical skills at national and international level in higher education. The internships will be carried out in the institutes. The companies with which the Faculty of Physics has concluded internship agreements. The targeted fields of activity are multiple, the possible targeted employers being both from the research-development environment and from other fields.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in final				
		methods	mark				
10.2 Tutorials	rpe 10.1. Assessment criteria rials - evaluation of the experimental skills acquired in the laboratory activity acticals - evaluation of the capacity for analysis and interpretation of experimental results mal requirements for passing the exam examination is conditional on the completion of all planned of the practice coordinator. ents for mark 5 (10 points scale) ry attendance at all activities included in the internship portform of the Activity Report, following the internship of the main notions, methods, techniques. ents for mark 10 (10 points scale) ents for mark 10 (10 points scale)		0-100%				
10.2 14011415			(if applicable)				
	- evaluation of the experimental skills						
	acquired in the laboratory activity	Internehin / activity					
10.5.2. Practicals	- evaluation of the capacity for		100 %				
	analysis and interpretation of	report					
	experimental results						
10.6. Minimal requirements for	or passing the exam						
The final examination is cond	The final examination is conditional on the completion of all planned activities and takes into account the observations /						
proposals of the practice coor	proposals of the practice coordinator.						
Requirements for mark 5 (10	points scale)						
• Mandatory attendance at all	activities included in the internship portfo	olio					
• Preparation of the Activity F	Report, following the internship						
• Learning the main notions, r	nethods, techniques.						
Requirements for mark 10 (10) points scale)						
• Skills, well-argued knowled	ge						
• Demonstrated ability to anal	yze phenomena and processes						
• Personal approach and inter	Personal approach and interpretation						

Date 05.10.2021

Teacher's name and signature

Practical instructor, name(s) and signature(s) Conf.dr. Vasile BERCU

Date of approval 11.11.2021

Head of Department, Prof.dr. Alexandru Jipa

DI 313F.EN Undergraduate dissertation writing

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Undergraduate dissertation writing									
2.2. Teacher									
2.3. Tutorials/Practicals instructor(s)					Conf.dr. Vasile Bercu				
2.4. Year of	2.5.	2.5.	2.5. Ц 2	2.6	. Type of	17	2.7. Type of course	Content ¹⁾	DS
study	3	Semester		eva	luation	v	unit	Type ²⁾	DI

¹⁾ fundamental (DF), speciality (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in		distribution:		Tutorials/Practicals	
curriculum		Lecture		Tutoriais/Fracticais	
3.2 Total hours per semester	60	distribution:		Tutorials/Practicals	
5.2. Total nours per semester	00	Lecture		Tutoriais/Tracticals	
Distribution of estimated time for	or study				hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					
3.2.2. Research in library, study of electronic resources, field research			6		
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks			6		
3.2.4. Examination			3		
3.2.5. Other activities					
3.3. Total hours of individual					

3.3. Total hours of individual study	12
3.4. Total hours per semester	75
3.5. ECTS	3

4. Prerequisites (if necessary)

4.1. curriculum	Cover the courses from the first and the second year
4.2. competences	Knowledge of mathematics, physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for practicals/tutorials	Laborator

6. Specific competences acquired

Professional	C1- Identify and make appropriate use of the main laws and principles of physics, in a given context.
riolessional	C4 – Carry out basic experiments in physics by using specific laboratory equipment.
competences	C5 – Analize and communicate basic scientific, educational and popular information on physics.
	CT1 - Carrying out professional tasks efficiently and responsibly in compliance with the legislation of
Transversal	deontology specific to the field under qualified assistance.
competences	CT3- Efficient use of trousted sources of scientific information and profficient communication of
_	scientific data in English

7. Course objectives

7.1. General	Application in practice of the theoretical knowledge acquired
objective	
7.2 Specific	- Understandig the specific aspects and the ability to work with different phenomena;
7.2. Specific	- Developing the capacity to work within a research team using laboratory equipment.
objectives	-Development of experimental skills specific to the field.

8.1. Lecture [chapters]	Teaching techniques	Observations
Recommended lectures:		
9.2 Tutorials [main themes]	Teaching and learning	Observations
	techniques	Observations
	Teaching and learning	Observations
	techniques	Observations

8.3. Practicals [practical activities, projects, etc.]	Teaching and learning techniques	Observations
In agreement with the subject chosen for research activity	Guided practical activity	60 hours
Recommended lectures: It is to be specified for the chosen topic, by the supervising rules and initial training seminars for students	g teacher and the practice coordi	nator; includes labor protection
8.4. Project [only if included in syllabus]	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The discipline meets the current requirements for the development of practical skills at national and international level in higher education. The internships will be carried out in the institutes. The companies with which the Faculty of Physics has concluded internship agreements. The targeted fields of activity are multiple, the possible targeted employers being both from the research-development environment and from other fields.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
			0-100%
10.2 Tutorials			(if applicable)
10.5.2. Practicals	 evaluation of the experimental skills acquired in the laboratory activity evaluation of the capacity for analysis and interpretation of experimental results 	Internship / activity report	100 %
10.6. Minimal requirements for	or passing the exam		
The final examination is cond	itional on the completion of all planned a	ctivities and takes into	account the observations /
proposals of the practice coordinator.			
Requirements for mark 5 (10 points scale)			
 Mandatory attendance at all activities included in the internship portfolio 			
• Preparation of the dissertation thesis			
Requirements for mark 10 (10 points scale)			
Skills, well-argued knowledge			
Demonstrated ability to analyze phenomena and processes			
Personal approach and inter	pretation		

Date 05.10.2021	Teacher's name and signature	Practical instructor, name(s) and signature(s) Conf.dr. Vasile BERCU
Date of approval	Н	ead of Department,
11.11.2021	Pro	f.dr. Alexandru Jipa

Elective courses

DO.105F.1.EN Computer programming (C/C++)

1. Study program

1. otady program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Structure of Matter, Physics of Earth. And Atmosphere, Astrophysics

1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Computer programmin				ing (C/C++)				
2.2. Teacher				Lect. Univ. Dr. Marius Călin				
2.3. Tutorials/Practicals instructor(s)			Lect. Univ. Dr. 1	Lect. Univ. Dr. Marius Călin				
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DC
	1		1	evaluation	C	Classification	Type ²⁾	DO
						of course unit	Type	20

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	3	distribution:	Lectures	1	Tutorials	0	Practicals	2	Proje ct	0
3.2. Total hours per semester	42	distribution:	Lectures	14	Tutorials	0	Practicals	28	Proje ct	0
3.3 Distribution of estimated time for study									hours	
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography								25		
3.3.2. Research in library, study of electronic resources, field research								20		
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks								9		
3.3.4. Examination								4		
3.3.5. Other activities										
3.4. Total hours of individual study 54										
3.5. Total hours per semester 100										

4. Prerequisites (if necessary)

3.6. ECTS

4.1. curriculum	-
4.2. competencies	High school mathematics, fundamental algorithms

4

5. Conditions/Infrastructure (if necessary)

bi Conditions, millasti detare (il necess	
5.1. for lecture	Video projector
5.2. for practicals/tutorials/projects	Computer room

6. Specific competences acquired

Professional competencies	– Usin - Solv – Prese – Inter	g of dedicated software for data analysis and processing ing physics problems in given conditions, using numerical and statistical methods nting and analyzing information of didactics, scientific and outreach in physics disciplinary approach of some physics problems
Transversal competencies	- Effic	ent use of information and communication resources available.

7. Course objectives

7.1. General objective	Getting acquitted with computer programming basics, especially with C/C++ programming language. Developing algorithms for solving physical problems.
7.2. Specific objectives	 knowledge of programming language specifics; physical theories/models developing the ability of modeling and solving physical problems; using the computing skills for experimental and theoretical applications

8.1. Lectures [chapters]	Teaching techniques	Observations
- Hardware. Computer architecture. Binary system.	Systematic exposition -	1 hour

- Software Operation systems and programming languages Short	lecture	
history	lecture.	
Correlation between the scientific coding language and the solving		
- Contendion between the scientific county language and the solving		
problem type: model calculations, simulation, data acquisition and		
processing. Examples of complex codes.		
- Scientific languages mostly used in physics: evolution, general		
characteristics, distinctive features		
- Programming stages: problem solving, developing algorithm,	Systematic exposition -	1 hour
implementation, compilation, execution.	lecture. Examples	
- Structure of a C++ program		
- Preprocessor directives, headers, libraries		
- Input/output		
- Variable types. Constants.	Systematic exposition -	1 hour
- Operators: arithmetic, relational and comparison, logical, assignment,	lecture. Examples	
conditional, sizeof, dot (.), arrow (- >), increment and decrement, etc.	I.	
- Control structures*	Systematic exposition -	1 hour
* selection statements if - else switch	lecture Examples	1 noui
* iteration statements (loops): while do _ while	lecture. Examples	
for jump statements: continue break goto otc		
Functional types, declaring, prototypes, calling		
- Functions: types, declaring, prototypes, caning		11
- Arrays: initializing, accessing the values using references and	Systematic exposition -	1 hour
pointers	lecture. Examples	
- Reference and dereference operators		
- Strings, operations with strings		
- Pointers: declaring pointers, operations, comparison	Systematic exposition -	2 hours
- Ponters and references	lecture. Examples	
- Dynamic memory: operators new, delete	Systematic exposition -	2 hours
- Data structures	lecture. Examples	
- Classes: definition objects constructors	Systematic exposition -	2 hours
deconstructors initialization access to members conv and move	lecture Examples	- 1100110
constructors		
Object Oriented Programming (OOP) Characteristics: encapsulation	Systematic exposition -	2 hours
inheritance, polymorphicm	locture Examples	2 110015
Analysis of complex codes written in C+++ Dect. CEANT4	Systematic apposition	1 hour
- Analysis of complex codes written in C++: Root, GEAN14	Systematic exposition -	1 Hour
	lecture. Examples	
Bibliography:		
Bibliography:		
1. Bjarne Stroustrup – Principles and Practice Using C++ - Addison – We	esley Publishing Company, 200	9
2 Bjarne Stroustrup – The Design and Evolution of C++, - Addison – We	esley Publishing Company, 1994	1
3. R. Andonie, I. Gârbacea – Algoritmi fundamentali, o perspectivă C++	- Editura Libris, Cluj –Napoca,	1995
4. M. Hjorth-Jensen – Computational Physics, Universitatea din Oslo, no	ote de curs, 2012	
5. https://isocpp.org		
6. www.cplusplus.com		
7. www.learncop.com		
8. http://www.stroustrup.com		
8.2 Tutorials	Teaching and learning	
	tochniquos	Observations
	techniques	
Bibliography:		
8.3. Practicals	Teaching and learning	Observations
	techniques	
Basic statements in C and C++. Applying the sequence Edit-Compile-	Guided practical	2 hours
Link-Run for C++ codes in operation system Linux	activity	
Developing codes including different types of variables, operators,	Guided practical	4 hours
control structures, preprocessor directives, functions	activity	
Developing codes including arrays, strings, pointers	Guided practical	4 hours
r 0	activity	

Developing codes which use dynamic memory and data structures.classes	Guided practical activity	4 hours
Developing codes emphasizing the advanteges of OOP	Guided practical activity	4 hours
Random number generation and applications	Guided practical activity	2 hours
Plotting with GnuPlot. Input/output from files	Guided practical activity	2 hours
Performance analysis and optimization	Guided practical activity	4 hours
The structure of complex codes. Comparison between C++ and the	Guided practical	2 hours
latest versions of Fortran	activity	
 Bibliography: Bibliography: 1. Bjarne Stroustrup, Programming, Principles and Practice Using C++, 2. Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesle 3. https://isocpp.org 	Addison-Wesley Publishing, 20 y Publishing Company, 1994	08
8.4. Project	Teaching and learning techniques	Observations
Bibliography:		<u> </u>

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops practical competences and abilities which are fundamental for an undergraduate student in the field of modern Physics, corresponding to national and European/international standards.

The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union.

The contents are in line with the requirements/expectations of the main employers of the graduates (economy, research, education).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in final mark
		Inculous	That mark
10.4. Lecture	- knowledge, understanding,	Written test	45%
	coherence logic and clarity of		
	concrence, logic and charity of		
	exposition		
10.5.1. Tutorial			
10.5.2. Practical	- ability to model a problem, create an	Computer code	55%
	algorithm, implement it into a	1	
	Tunctional code		
10.5.3. Project			
100 10 1 1 1	1		

10.6. Minimal requirements for passing the exam

Participation to all practical activities and at least 7 lectures

- Solving 25% of the written test.

- Developing and presenting a code with a low degree of complexity but fully functional.

Requirements for getting mark 10 (10 points scale)

• Correct answer to all the subjects indicated for obtaining grade 10

• Skills, well-argued knowledge

- Demonstrated ability to analyze phenomena and processes
- Personal approach and interpretation.

Date 10.10.2021 Teacher's name and signature Lect. Univ. Dr. Marius Călin Practicals/Tutorials instructor(s) name(s) and signature(s) Lect. Univ. Dr. Marius Călin

Date of approval 11.11.2021

Head of Department Prof. Univ. Dr. Alexandru Jipa

DO.105F.2.EN Physical Chemistry

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	Physical Che	mistry						
2.2. Teacher				Assoc.Prof. dr. eng. Marcela-Elisabeta Bărbînță-Pătrașcu				
2.3. Tutorials/Practicals instructor(s)			Assoc.Prof. dr. eng. Marcela-Elisabeta Bărbînță-Pătrașcu					
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DC
	1		1	evaluation	C	Classification		
						of course unit	Type ²	DO

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	3	distribution:	Lectures	1	Tutorials	Practicals	2	Project	
3.2. Total hours per	42	distribution:	Lectures	14	Tutorials	Practicals	28	Project	
semester							_	-)	
3.3 Distribution of estimated time for study hou					hours				
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 18					18				
3.3.2. Research in library, study of electronic resources, field research					15				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks					21				
3.3.4. Examination 4					4				
3.3.5. Other activities									
3.4. Total hours of individu	ual stu	ıdy		5	54				
3.5. Total hours per semes	ter			1	00				
3.6. ECTS				2	ļ				

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (videoprojector, PC), Internet access
5.2. for practicals/tutorials/projects	Laboratory rooms equipped with:
	• Modern equipment, instruments and accessories: modern laboratory glassware;
	Sartorius analytical balance; Analytical balance Kern ABS 220-4N, 220g; Kern
	precision scales; pipettes; micropipettes; manual and electronic pipetting
	devices; magnetic stirrers with and without heating; computers; mechanical
	stirrer (VIBRAX stirrer); pH-meters (stationary: Fisher Scientific; portable: pH
	110 Exstik); Conductometer 3110 WTW; ovens with thermostat and electronic
	display; water purification system Milli-Q (conductivity $\leq 0.1 \ \mu S \ cm^{-1}$); Titan
	probe sonicator Hielscher UP 100H; Ultrasonic bath BRANSON 1210; Water
	bath with electronic display and recirculation; SIGMA 2-16 K cooling
	centrifuge; spectrophotometers; UV-Vis single-beam spectrophotometer (model
	UV-20) ONDA; Temperature sensor with electronic display; Fisher Scientific
	Vortex Agitator, 1500 rpm; Ostwald viscometer; specific reagents; refrigerator;

 high-performance air conditioners, etc. Interactive practical laboratory equipment - Phywe experimental set-up, computer assisted. Computers with internet connection, tables, video projector, screen, blackboard. 	
---	--

6. Specific compe	tences acquired
Professional	Identification and correct use of physical laws and principles in given contexts.
competences	Analysis and communication/presentation of scientific data.
	Interdisciplinary approach of topics in physics.
Transversal	Efficient use of the sources of scientific information and communication of scientific data in English
competences	Efficient use of the sources of scientific information and communication of scientific data in English

7. Course objectives

7.1. General objective	Understanding the notions related to the composition, physico-chemical properties and transformations of matter, as well as the energy involved in these transformations.
7.2. Specific objectives	Knowledge of specific physical theories and models used in physical chemistry; Using the acquired knowledge to solve specific problems in physical chemistry; performing and interpretation of experiments. Understanding the dynamics of chemical processes, factors that influence the reaction rate; calculation of the kinetic parameters. Calculation the amount of heat released / necessary to conduct a chemical reaction. Predict the outcome of chemical reactions based on thermodynamic parameters. Getting information about material properties from phase diagrams. Calculation of the equilibrium compositions and equilibrium constants. Understanding the basic concepts in electrochemistry.

8.1. Lectures [chapters]	Teaching techniques	Observations
Introduction to physical chemistry (main physical	Systematic exposition – lecture;	1 hour
chemistry subjects; tangent with other disciplines;	interactive presentation.	
general notions).	Examples. Applications	
Chemical Thermodynamics. (Types of systems.	Systematic exposition – lecture;	2 hours
Thermodynamic parameters. The laws of	interactive presentation.	
thermodynamics. Thermochemistry. Equations Gibbs -	Examples. Applications	
Helmholtz. Chemical potentials.)		
Phase equilibrium (basics; phase diagram; ideal and real	Systematic exposition – lecture;	1 hour
solutions)	interactive presentation.	
	Examples. Applications	
Chemical equilibrium (Law of mass action for	Systematic exposition – lecture;	2 hours
chemically homogeneous and heterogeneous	interactive presentation.	
equilibrium. Equilibrium constants)	Examples. Applications	
Chemical kinetics (Fundamentals. Reaction rate.	Systematic exposition – lecture;	3 hours
Reaction order. Reaction mechanisms. Arrhenius	interactive presentation.	
equation)	Examples. Applications	
Electrochemistry (Specific and equivalent electrical	Systematic exposition – lecture;	5 hours
conductivity of electrolyte solutions and their	interactive presentation.	
dependence on solution dilution. Conductometric	Examples. Applications	
method for determining the degree and constant of		
ionization of weak electrolytes, and the conductivity		
coefficient of strong electrolytes. Electrode potentials.		
The mechanism of the appearance of the electric double		
layer. Nernst equation for electrode potential. Electrode		
classification. Standard hydrogen electrode. Galvanic		
cells. Dependence of electromotive force on the		
electrolyte concentration. Electrochemical cells.		

Potentiometry. pH. Electrolysis and its applications)						
Bibliography:						
 Neniţescu, C. D., Chimie generală, Editura Didad 	ctică și Pedagogică, București, 1978					
 Linus Pauling, Chimie generală, Editura Ştiinţifi 	 Linus Pauling, Chimie generală, Editura Științifică, București, 1988 					
 Parotă, A., Vasile, A. D., Probleme de chimie apli 	<i>icată</i> , vol. 1, Editura Tehnică, Bucure	şti, 1988				
 P. Atkins and L. Jones, Chemical Principles: the c 	juest for insight, 5th Ed., Freeman (N	lew York, 2010).				
 R. Chang, Chemistry, 8th Ed., McGraw-Hill (New 	w York, 2004).					
 M. E. Barbinta-Patrascu, N. Badea, A. Meghea 	, Oxidative stress studies on plant DN	NA exposed to ozone,				
Journal of Optoelectronics and Advanced Materials, 15 ((5-6), 596 – 601, 2013.					
Barbinta-Patrascu, M. E., Badea, N., Tugulea,	L., Meghea, A. Photo-oxidative stre	ess on model membranes –				
studies by optical methods, <i>Key Engineering Materials</i> , 4	15, p. 29-32, 2009.					
• T. W. Shattuck, <i>Physical Chemistry</i> , Colby Colleg	ge, 2015.					
M. Klotz, R. M. Rosenberg, Chemical Thermody	mamics: Basic Theory and Methods,	Benjamin/Cummings,				
Menio Park, CA, 1986.						
J. S. Winn, <i>Physical Chemistry</i> , Harper Collins, F	New York, INY, 1995.	· · · · · · · · · · · · · · · · · · ·				
 K. A. Dill, S. Bromberg, Molecular Driving Ford Bishaw Cashad Caiwaa New York, NY, 2002. 	es: Statistical Inermoaynamics in Cr	iemistry ana				
 Biology, Garland Science, New York, NY, 2003. D.A. McQuerrie, L.D. Simon, Physical Chemistre 	Linapis. 1-7.	Science Decks 1007				
 D. A. MCQuarrie, J. D. Simon, Physical Chemistry D. M. Atlving, L. do Daulo, Dhugiagl Chemistry, 7th 	<i>Ed</i> Erooman New York NY 2002	Science Books, 1997.				
 P. W. Alkilis, J. de Paula, Physical Chemistry, 7th Bărbîntă Bătrascu M E. Chimia pantru studa 	<i>Eu.</i> , Fleellidii, New York, NY, 2002.					
 Dal Diligit Fati așcu, M. E., Chimie pentru stude K. L. Kapoor A Toytbook of Dhysical Chemistry 	McCraw Hill Education (India) Driv	ato Limited 2015				
 IC. L. Rapool, A Textbook of Physical Chemisury, Irina Zaura Nicoleta Preda Monica Enculascu 	Lucian Diamandescu, Catalin Negrila	ale Linned, 2013. Mihaola Bacalum				
Camelia Ungureanu Marcela Elisabeta Barbinta-Datras	Cu Cytotoxicity Antioxidant Antiba	actorial and				
Photocatalytic Activities of $7nO-CdS$ Powders <i>Materials</i>	(13(1) 182 2020)					
8.2 Tutorials	Teaching and learning techniques	Observations				
	reaching and rearing teeningues					
Bibliography:						
8.3. Practicals	Teaching and learning techniques	Observations				
Instructions for safety and health at work for activities in						
physical chemistry lab. Familiarization with laboratory	Systematic exposition - lecture.	2 hours				
equipment and accessories.	Conversations. Examples					
Types of concentrations; measurement units. Solving	Systematic exposition - lecture.	4 hours				
problems. Preparation of solutions of a certain	Conversations. Examples.					
concentration. Successive dilutions.	Applications.					
	Guided practical activity					
Determination of the viscosity of liquids	Guided practical activity	2 hours				
Acetic acid adsorption on activated carbon.		4 hours				
Determination of the adsorption isotherm.	Guided practical activity					
Determination of dissociation constant of electrolyte		2 hours				
solutions	Guided practical activity					
Chemical equilibrium. Le Chatelier's Principle	Guided practical activity	2 hours				
The reaction kinetics of the reduction of methylene blue		2 hours				
with ascorbic acid	Guided practical activity					
Determination of Activation Energy	Guided practical activity 2 hours					
Electromotive force of the Daniell-Jacobi cell	Guided practical activity 4 hours					
Discussing laboratory reports. Solving problems and	Systematic exposition - lecture.	4 hours				
tests of physical chemistry	Conversations. Examples.					
	Applications.					
	* **					

Bibliography:

Parotă, A., Vasile, A. D., *Probleme de chimie aplicată*, vol. 1, Editura Tehnică, București, 1988

• András Kiss, Lívia Nagy, Géza Nagy, Barna Kovács, Beáta Peles-Lemli, Sándor Kunsági-Máté (Eds.), Manual for Physical Chemistry Laboratory (Experiments for Undergraduate Students), 2014.

 Donáth-Nagy Gabriella, Vancea Szende, Imre Silvia, CHIMIE FIZICA PRACTICA, University Press, Târgu Mures, 2012, ISBN: 978-973-169-199-2.

• Tennessee End of Course Practice Test for Chemistry, Tennessee Department of Education Web site, USA, 2013.

Bărbînță-Pătrașcu, M. E., *Chimie pentru studenți - note de curs* (pdf)

http://depts.washington.edu/chemcrs/bulkdisk/chem155A_win04/info_Lab_Manual.pdf

http://chemistry.harvard.edu/files/chemistry/files/2012_1_9_safetymanual1.pdf

http://www.homepages.dsu.edu/bleilr/npmanual.pdf http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques-january-iap-2012/labs/ MIT5_301IAP12_comp_manual.pdf 8.4. Project Teaching and learning techniques Observations

Bibliography:

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit aims at developing specific theoretical and practical competences and abilities in the field of Physical Chemistry, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania (Babes-Bolyai University, Cluj-Napoca) or from abroad (The University of British Columbia; University of Coimbra; University of California Los Angeles UCLA; Colby College; McGill University; University College London; Washington State University). The content of the discipline is in accordance with the requirements for employment in research institutes in physics, materials science and education (in accordance with the law).

10. Assessment

10.110000000000000000000000000000000000			
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of exposition correct use of equations/and theories ability to indicate/analyse specific examples 	Written test	60%
10.5.1. Tutorial			
10.5.2. Practical	 Ability to perform specific experiments; ability to handle equipment, chemical reagents and laboratory utensils; Application of specific methods for solving problems and tests of physical chemistry; Correct processing and interpretation of experimental results. 	Continuous evaluation; Lab reports; practical evaluation	40%
10.5.3. Project			
10 C Minimal up qui up anto fe			

10.6. Minimal requirements for passing the exam

Attendance at least 50% of the number of lectures and compulsory attendance at all laboratory sessions.

Completion of all work and laboratory reports.

Correct solution for the subjects indicated to obtain score 5 at the final colloquium.

Date 4.11.2021	Teacher's name and signature Assoc.Prof. dr. eng. Marcela-Elisabeta Bărbînță-Pătrașcu	Practicals/Tutorials instructor(s) name(s) and signature(s) Assoc.Prof. dr. eng. Marcela-Elisabeta Bărbînță-Pătrascu
Date of approval	Head of	Department
11.11.2021	Assoc.Prof.Dr. Adrian Radu	

DO.106F.1.EN Ethics and academic integrity

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	The Structure of Matter, the Physics of the Atmosphere and the Earth,
	Astrophysics
1.4. Field of study	Physics

1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Ethics and academic			c integrity					
2.2. Teacher		Lecturer PhD Sanda Voinea						
2.3. Tutorials/Practicals instructor(s)								
2.4. Year of study		2.5. Semester		2.6. Type of		2.7. Type of	Content 1)	DC
	1		1	evaluation	С	course unit	Type ²⁾	DO

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

		,		-		-				
3.1. Hours per week in curriculum	1	distribution:	Lectures	1	Tutorials	0	Practicals	0	Project	0
3.2. Total hours per semester	14	distribution:	Lectures	14	Tutorials	0	Practicals	0	Project	0
3.3 Distribution of estimated time for study				hours						
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					8					
3.3.2. Research in library, study of electronic resources, field research					12					
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks					12					
3.3.4. Examination					4					
3.3.5. Other activities										
3.4. Total hours of individual study 32										
3.5. Total hours per semester 50										

3.6. ECTS

4. Prerequisites (if necessary)

········ (·····	
4.1. curriculum	
4.2. competences	

2

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia room
5.2. for practicals/tutorials/projects	

6. Specific competences acquired

Professional competences	
	using the practices that characterize the scientific and academic community.
Transversal	
competences	
	Understanding the importance of academic integrity for the functioning of society

7. Course objectives

7.1. General objective	Development of moral thinking and integration of students in the ethical culture
	of the university.
7.2. Specific objectives	Integration of scientific research into the moral culture,
	Consolidation of autonomy in the moral decision,
	Internalization of good practices of intellectual conduct.

8.1. Lectures [chapters]	Teaching techniques	Observations
	·	

Moral evaluation frameworks. How do we analyze an ethical issue?	Lecture. Example. Discussion.	2 hours			
Fundamental concepts of ethics					
Ethics and the scientific community					
Criteria for moral evaluation: consequences / intentions.					
virtues Systematic exposition - lecture Example					
Discussion					
Academic integrity: institutional tools	Lecture Example Discussion	2 hours			
Codes and ethics commissions	Eccure: Example: Discussion.	2 1100115			
The virtues of an integral academic organization					
Fthical evaluation and endorsement of research projects:					
why it is necessary and how it is done					
LIB's ethical culture. Who do we turn to solve a moral					
problem?					
The specifics of academic othics	Lactura Example Discussion	2 hours			
Passarch othics, professional othics	Lecture. Example. Discussion.	2 110015			
Immoral hobaviors in academic organizations (typology					
minioral behaviors in academic organizations (typology					
and consequences).					
Etnics and academic performance.		21			
Principles of research etnics. Academic freedom and	Lecture. Example. Discussion.	2 nours			
disagreement in science. Precautionary principle and					
risky research (e.g. with dual use). Informed consent and					
respect for autonomy. Challenges and dilemmas in					
research ethics.					
Plagiarism and self-plagiarism. Falsification or	Lecture. Example. Discussion.	6 hours			
fabrication of research results. Originality of results					
Ethics of publication: author and co-author. Access to					
resources (justice and equity in academic organizations					
and research teams). Deontology of teamwork in					
scientific research. Implications and results of					
collaboration. Respect for intellectual property.					
Copyright. Academic writing. How to write an academic					
paper.					
Bibliografie:					
Julian Baggini, Peter S. Fosl, A Compendium of Ethical C	oncepts and Methods, Blackwell Pub	lishing, 2014.			
Blaxter, L, Hugh, C. Tight, L. How to research, New York	, 2006				
Angelo Corlett. " The Role of Philosophy in Academic Etl	hics", Journal of Academic Ethics, Vo	olume 12, Issue 1, pp 1–			
14, 2014					
A. Avram, C. Berlic, B. Murgescu, Mirela Luminița Murge	escu, M. Popescu, Cosima Rughiniş,	D. Sandu, E. Socaciu,			
Emilia Șercan, B. Ștefănescu, Simina Elena Tănăsescu, Sa	nda Voinea, Coordonator L. Papadim	na, "Deontologie			
academică. Curriculum-cadru", Editura Universitatii din București, 2017.					
Codul de etică al Universității din București <u>https://unibu</u>	c.ro/wp-content/uploads/2021/01/CC	DUL-DE-ETICA-SI-			
DEONTOLOGIE-AL-UNIVERSITATII-DIN-BUCURESTI-2020-1.pdf					
Carta UNIBUC (https://unibuc.ro/wp-content/uploads/2018/12/CARTA-UB.pdf)					
Joshua D. Greene, et. al. "An fMRI investigation of emotional engagement in moral judgment." Science, 2001.					
Neil Hamilton. Academic Ethics, Westport: Praeger Publishers, 2002					
Bruce Macfarlane. Researching with Integrity. The Ethics of Academic Enquiry, London: Routledge, 2009.					
James Rachels, Introducere în Etică, traducere de Daniela Angelescu, Editura Punct, 2000.					
Ebony Elizabeth Thomas and Kelly Sassi, "An Ethical Dil	emma: Talking about Plagiarism and	Academic Integrity in the			
Digital Age", English Journal 100.6, pp. 47–53, 2011					
Anthony Weston, A Practical Companion to Ethics, O	xford University Press, 2011				
Description of the second comparison for the New York of the 1000 2011					

- Barrow, R., Keeney, P. (eds), Academic Ethics, New York: Routledge, 2006
- Bretag, T. (*ed*), *Handbook of Academic Integrity, Singapore: Springer, 2016* Davis, M., Ethics and the University, New York: Routledge, 1999

De George, R., T., Academic Freedom and Tenure: Ethical Issues, Oxford: Rowman & Littlefield Publishers, 1997

8.2. Tutorials	Teaching and learning techniques	Observations

Bibliography:		
8.3. Practicals	Teaching and learning techniques	Observations
Bibliography:		
8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The course addresses the most discussed theoretical issues in the area of academic ethics, along with their practical impact implications. The content of the course is consistent with the content of similar courses taught at universities in the country (Babeş-Bolyai University, Cluj Napoca, "Alexandru Ioan Cuza" University of Iasi) and major universities abroad, providing students with tools for moral decision and ethics that can be used by students in their academic activity and in their professional life.

10. Assessment

Activity type	10.1 Assessment criteria	10.2. Assessment	10.3. Weight in		
reavity type	10.1.713563511611 6116118	methods	final mark		
10.4. Lecture	Originality	On-going evaluation			
	Critical spirit	(individual or team topics).	20%		
	Academic writing				
	Knowledge of the rules of academic	Elaboration of an essay with	80%		
	ethics	a topic presented in the			
		course			
10.5.1. Tutorial					
10.5.2. Practical					
10.5.3. Project					
10.6. Minimal requirements for passing the exam					
Complete solving of the subjects indicated for obtaining the ADMITTED qualifier.					

Date 11.10.2021

Teacher's name and signature Lecturer Sanda Voinea Practicals/Tutorials instructor(s) name(s) and signature(s)

Date of approval 11.11.2021

Head of Department Professor PhD Alexandru Jipa

DO.106F.2.EN. Authoring and scientific dissemination

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Authoring and scientifi				fic dissemination				
2.2. Teacher				Conf. Dr. Necula Cristian Constantin				
2.3. Tutorials/Practicals instructor(s)			-					
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DC
	1 st		1	evaluation	C	Classification	Type ²⁾	DO
						of course unit	-54-	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

)								
3.1. Hours per week in curriculum	1	distribution:	Lectures	1	Tutorials	-	Practicals	-	Project	-
3.2. Total hours per	14	distribution:	Lectures	14	Tutorials	-	Practicals	-	Proiect	_
semester									rioject	
3.3 Distribution of estimated time for study hou							hours			
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography							16			
3.3.2. Research in library, study of electronic resources, field research							16			
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks -							-			
3.3.4. Examination 4							4			
3.3.5. Other activities -							-			
3.4. Total hours of individual study 32										
3.5. Total hours per semester				5	50					
3.6. ECTS 2										

4. Prerequisites (if necessary)

4.1. curriculum	Any/All of courses contained in the curriculum
4.2. competencies	Ability to work with Microsoft Office or equivalent package.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom supplied with a projector
5.2. for practicals/tutorials/projects	-

6. Specific competences acquired

	· · · · · · · · · · · · · · · · · · ·
Professional	C1: Properly identification and application of the main problems of the authoring and scientific
competencies	writing in a given context.
	C1.1: Description and recognition of structure of a scientific paper/book/conference comunication
	using specific criteria.
	C1.2: Correct application of the scientific writing methods to fulfill the specified tasks.
	C3: Solving authorship and scientific writing and presentation problems in given conditions using
	specific technique.
	C3.1 Properly application of the scientific writing methods for elaboration of different scientific
	dissemination (e.g. writing a short scientific communication).
	C3.3 Correlation between scientific writing methods and the specified particular problems
	appearing in scientific dissemination and authorship.
	C3.4 Evaluation of the results and comparison to literature example
	C4. Application of the knowledge acquired from scientific writing in concrete situations from various
	Physics domains.
	C6: Interdisciplinary approach of several Physics subjects
	C6.1: Making connections necessary to application of scientific writing using basic knowledge
	from different Physics subjects
	C6.4: Making connections between different Physics disciplines and possibly other related domains.
Transversal	
competencies	
	CT2: Efficient work techniques application in multidisciplinary team on various hierarchical levels.
	CT3: Efficient usage of information, communication resources and assisted training.

7. Course objectives

7.1. General objective	Fundamental concepts presentation related to write and publish a successful
	scientific work.
7.2. Specific objectives	Understanding the specific aspects regarding the elaboration of any scientific publication such as a scientific paper, chapter book/book, poster preparation, oral presentations atc
	presentations etc.

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
	· · ·	
1. Introduction. Definition of scientific writing. The aim(s) for writing a scientific paper. How to plan a research and choose a paper topic. Literature search and state of the art.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2 hours
2. The standard structure of a scientific paper. Abstract, Introduction, Method, results and discussions, conclusions. Example of paper from Journal of Geophysical Research.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2 hours
3. Language and style of a scientific paper. Using abbreviations. Preparing the Figures and Tables. The quality of a figure. Examples of Figures and Tables.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2 hours
4. Preparing the Abstract and Title. References and citation of them in the main manuscript. Acknowledgments. Copyright considerations.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2 hours
5. Publication process. Choosing the appropriate journal. Submitting process. Cover letter. The review process. Accept, modify, reject letters.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2 hours
6. Authorship definition. Authors contributions. Author order. Acknowledgments again. Plagiarism. Authors responsibilities before publication, during peer review process and after publication	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2 hours
7. Other scientific writing. Writing a review paper. Writing a book chapter/ book. Writing a conference report. Preparing a poster. Presenting a work orally in a conference meeting.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2 hours
Bibliography: 1. Chris A. Mack, 2018, How to Write a Good Scientific F 2. Barbara Gastel and Robert A. Day, 2016, How to Write Santa Barbara, California, USA, 346 pp.	aper, SPIE PRESS, Bellingham, Was and Publish a Scientific Paper, Greer	shington USA, 124 pp. wood,

3. S. R. N. Reis, A. I. Reis, 2013, How to Write Your First Scientific Paper, DOI: 10.1109/IEDEC.2013.6526784.

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit forms/develops theoretical and practical competences and abilities which are important for an undergraduate student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of exposition correct use of scientific writing methods and concepts ability to apply to specific examples 	oral examination	100%
10.5.1. Tutorial	-	-	-
10.5.2. Practical	-	-	-
10.5.3. Project	-	-	-

10.6. Minimal requirements for passing the examParticipating to minimum 50% of the lectures.Requirements for mark 5 (10 points scale)Correct understanding of the main concepts and methods of authoring and scientific dissemination and ability to use them on given particular situations.

Date 2.11.2021	Teacher's name and signature Necula Cristian Constantin	Practicals/Tutorials instructor(s) name(s) and signature(s) -	
Data of approval	Ц	and of Donartmont	

Date of approval 11.11.2021

Head of Department Prof.dr. Alexandru Jipa

DO.205F.1.EN Simulation Methods in Physics

1.	Study	program
- .	Stady	program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma, Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

= oouroe unit									
2.1. Course unit tit	le	Simulation Methods in Physics							
2.2. Teacher Conf.dr. Alexandru NICOLIN, Le					DLIN, Lect.dr. R	oxana ZUS			
2.3. Tutorials/Practicals instructor(s)			Conf.dr. Alexandru NICOLIN, Lect.dr. Roxana ZUS						
2.4. Year of		2.5.		2.6	. Type of		2.7. Type of	Content ¹⁾	DS
study	II	Semester	Ι	evaluation		Е	course unit	Type ²⁾	DO
								Type	

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	3	distribution:	Lectures	1	Tutorials	0	Practicals	1	Project	1
3.2. Total hours per semester	42	distribution:	Lectures	14	Tutorials	0	Practicals	14	Project	14
Distribution of estimated time for study					hours					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					25					
3.2.2. Research in library, study of electronic resources, field research					20					
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					34					
3.2.4. Examination					4					
3.2.5. Other activities										
3.3. Total hours of individual study 79										
3.4. Total hours per semester 125										
3.5. ECTS		5								

4. Prerequisites (if necessary)

4.1. curriculum	Programming Languages, Algebra, Analysis, Differential Equations
4.2. competences	Knowledge of programming, linear algebra, analysis, differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Computer, Video projector
	Lecture notes

	Bibliography
5.2. for practicals/tutorials	Computer network
	Lecture notes
	Bibliography

6. Specific competences acquired

Professional competences	 Identifying and using the right physical laws and principles in given conditions Using of dedicated software for data analysis and processing. Solving physics problems in given conditions, using numerical and statistical methods.
Transversal competences	 Performing professional tasks in an efficient and responsible manner in compliance with the legislation and deontology specific to the field under qualified assistance. Effective use of information sources, communication and training resources in a foreign language.

7. Course objectives

7.1. General objective	Learning techniques of numerical simulation for solving of problems and data analysis
7.2. Specific objectives	- Understanding specific problematic and correlation between analytic and applicative
	aspects;
	- Developing abilities for numerical simulation;
	- Developing abilities for adapting numerical algorithms to physics problems;
	- Developing abilities for data analysis and interpretation from numerical estimations
	and to formulate rigorous theoretical conclusions.

8.1. Lecture [chapters]	Teaching techniques	Observations
1. Modeling and simulation of physical systems Fundamental concepts - system; the structure of systems modeling and simulation; measurement and experimental data processing. Linear systems in physics - OTF and PSF. Linear prediction - Fourier transform, convolution and de- convolution signals. Modeling and simulation in contemporary knowledge.	Systematic exposition - lecture. Critical analysis. Examples	4 hours
2. Theory of modeling and simulation Basic concepts; specification systems formalism. Formalisms of modelling and their simulators: DT (Discrete Time); DEQ (Differential Equation); DEV (Discrete Event); Verification, Validation, Approximate morphisms. Complexity theory.	Systematic exposition - lecture. Critical analysis. Examples	4 hours
3. Ordinary Differential Equations (ODE) Modeling with ODE. Geometric meaning of the solutions of differential equations. Solutions of differential equations. Finite differences. Cellular automata. Nonlinear physical systems - Phase space, maps and flows, autonomous and non-autonomous systems; deterministic chaotic systems. Applications in physics.	Systematic exposition - lecture. Critical analysis. Examples	4 hours
4. Monte Carlo simulation methods Applications in physics	Systematic exposition - lecture. Critical analysis. Examples	4 hours
5. Partial Differential Equations Finite difference methods; Spectral methods; Relaxation methods; Applications in physics: heat equation, diffusion, Navier- Stokes etc.	Systematic exposition - lecture. Critical analysis. Examples	6 hours
6. Presenting sample problems from physics (mechanics, thermodynamics, electromagnetics, atomic physics etc.) for project	Systematic exposition - lecture. Case study. Examples	2 hours

7. Integral Equations Fredholm Equations, Volterra Equations, Integro-	Systematic exposition - lecture.	4 hours			
Differential Equations, Inverse problems	Examples	i nouio			
 Bibliography: Bernard P. Zeigler, Herbert Praehofer, Tag Gon Kim, "Theory of Modeling and Simulation", Academic Press (2000); William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, "Numerical Recipes: The Art of Scientific Computing", 3rd ed., Cambridge University Press, 2007 B. Burden, L.D. Faires, "Numerical Analysis," Themson Brooks/Cole, 2010, Coorgo W. Collins, "Fundamental Science Press, 2017, Coorgo W. Collins, "Fundamental Science Press, 2017, Coorgo W. Collins, "Fundamental Science Press, 2007, Press, 2017, Coorgo W. Collins, "Fundamental Science Press, 2017, Coorgo W. Collins, Press, 2017, Coorgo W. Collins, Press, 2017, Coorgo W. Collins, "Fundamental Science Press, 2017, Coorgo W. Collins, "Fundamental Science Press, 2017, Coorgo W. Collins, Press, 2017, Coorgo W. Coorgo W. Collins, Press, 2017, Coorgo W. Coorgo W.					
Methods and Data Analysis", 2003 - Morten Hjorth-Jensen , "Computational Physics", University	of Oslo, 2006	i undamentar			
 Sheldon M. Ross, "Simulation", Academic Press (2002) Stephen Wolfram, A New Kind of Science (<u>http://www.wolfr</u> Boxana Zus, Lastura notes in electronic format, barutu fizica 	amscience.com/nksonline/toc.html)				
8.2. Tutorials [main themes] Teaching and learning techniques Observations					
8.3. Practicals [practical activities, projects, etc.]	Teaching and learning techniques	Observations			
Environment for programming the numerical and simulation methods exposed in the lectureSystematic exposition. Heuristic conversation. Guided practical activity1 hours					
Modeling, simulation and prediction of physical systems: DES (Differential Equation System); DTS (Discrete Time System); Devs (Discrete Event System). Applications in physics.Guided practical activity4 hours					
Programming the methods for numerical solution of ordinary differential equations. Applications in physics.	Guided practical activity	4 hours			
Programming the methods for numerical solution of partial differential equations. Applications in physics.	Guided practical activity	3 hours			
Programming the methods for numerical solution of integral equations. Applications in physics.	Guided practical activity	2 hours			
 Bibliography: Bernard P. Zeigler, Herbert Praehofer, Tag Gon Kim, "Theory of Modeling and Simulation", Academic Press (2000); William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, "Numerical Recipes: The Art of Scientific Computing", 3rd ed., Cambridge University Press, 2007 					
- R. Burden, J. D. Faires, "Numerical Analysis", Thomson Brooks/Cole, 2010- George W. Collins , "Fundamental Methods and Data Analysis", 2003					
- Morten Hjorth-Jensen, "Computational Physics", University of Oslo, 2006 - Sheldon M. Ross, "Simulation", Academic Press (2002)					
- Stephen Wolfram, A New Kind of Science (<u>http://www.wolfr</u> -Kendall Atkinson, "The Numerical Solution of Integral Equat	amscience.com/nksonline/toc.html) ions of the Second Kind ", Cambridge	e Univ. Press, 1997			
- P.K. Kythe , M.R. Shaferkotter, "Handbook of Computational Methods for Integration", Chapman & Hall, CRC Press, 2005					
- Mircea Bulinski, "Modelare si simulare – Aplicatii in OSPL"	, Ed. Universitatii Bucuresti, 2011				
- Roxana Zus, course notes in electronic format - <u>barutu.fizica</u> .	unibuc.ro/~ftmopl				
- Roxana Zus, Adrian Stoica, laboratory notes in electronic for	mat - <u>barutu.tizica.unibuc.ro/~ftmopl</u>				
8.4. Project [only if included in syllabus]	techniques	Observations			
Monte-Carlo simulation. Applications in physics.	Guided practical activity	4 hours			
Linear systems in physics. Linear prediction. Applications in physics.	Guided practical activity	4 hours			
Nonlinear systems in physics. Time-series analysis. Analysis of phase space. Applications in physics.	Guided practical activity	4 hours			
Stochastic and deterministic modeling of complex systems. Applications in physics.	Guided practical activity	2 hours			
 Bibliografie: Bernard P. Zeigler, Herbert Praehofer, Tag Gon Kim, "Theory of Modeling and Simulation", Academic Press (2000); William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, "Numerical Recipes: The Art of Scientific Computing", 3rd ed., Cambridge University Press, 2007 					

- Morten Hjorth-Jensen, "Computational Physics", University of Oslo, 2006
- Sheldon M. Ross, "Simulation", Academic Press (2002)
- Mircea Bulinski, "Modelare si simulare Aplicatii in OSPL", Ed. Universitatii Bucuresti, 2011

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

For the elaboration of the contents, of the teaching and learning methods, the teachers have consulted the corresponding lectures from national and international universities. The content is in agreement with the research topics of the R&D institutes that use numerical methods for solving specific problems, simulations and/or processing of physical data.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark	
10.4. Lecture	- coherence and clarity of exposition	Written test and oral	25%	
	- correct use of methods	examination		
	- ability to indicate/analyse specific			
	examples			
10.5.1. Tutorials				
10.5.2. Practicals	- ability to apply specific methods for	Evaluation through practical	25%	
	given problems	activity		
	- ability to present and discuss the			
	results			
10.5.3. Project [only if	- ability to apply the redactation	Evaluation through practical	50%	
included in syllabus]	techniques in solving the given	activity.		
	physics problem			
	- ability to present the methods and			
	techniques used			
	- the project presentation			
10.6. Minimal requirements for passing the exam				
Requirements for mark 5 (10	points scale)			
Minimum attendance: 50% lecture, 75% applied activities (practicals and project).				
Correct exposition of 50% from the theoretical topics at the final exam.				
Correct numerical solution of one problem at the final exam.				

Date 06.11.2021	Teacher's name and signature Conf.dr. Alexandru NICOLIN Lect.dr. Roxana ZUS	Practicals/Tutorials instructor(s) nam and signature(s) Conf.dr. Alexandru NICOLIN Lect.dr. Roxana ZUS

Date of approval 11.11.2021

le(s) Head of Department Lect.dr. Roxana ZUS

DO.205F.2.EN Systems theory

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solod state and Biophysics
1.4.Field of study	Physics
1.5.Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	Systems Theory

2.2. Teacher			Conf. dr. Mihai Dinca					
2.3. Tutorials/Practicals instructor(s)			Conf. dr. Mihai Dinca					
2.4. Year of study	2	2.5. Semester	2	2.6. Type of	Б	2.7.	Content ¹⁾	DS
	2		3	evaluation	E	of course unit	Type ²⁾	DO

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	3	distribution:	Lectures	1	Tutorials	Practicals	2	Project	
3.2. Total hours per	42	distribution:	Lectures	14	Tutorials	Practicals	28	Project	
2.2 Distribution of estimat	م ما بانیم	l fou stude							1
3.3 Distribution of estimated time for study					nours				
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						25			
3.3.2. Research in library, study of electronic resources, field research						25			
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks					29				
3.3.4. Examination					4				
3.3.5. Other activities									
3.4. Total hours of individual study 79									
3.5. Total hours per semester 125									

3.6. ECTS

4. Prerequisites (if necessary)

(i) i i i i i i i i i i i i i i i i i i				
4.1. curriculum	Calculus			
4.2. competencies	IT compentences			

5

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Teaching hall, LCD projector
5.2. for practicals/tutorials/projects	Computers, laboratory

6. Specific competences acquired

Professional competencies	Using of dedicated software for data analysis and processing. Carry out basic experiments in physics by using specific laboratory equipment.
Transversal competencies	Applying the techniques of effective multidisciplinary team working on various hierarchical levels. Efficient use of information and communication resources available.

7. Course objectives

J	
7.1. General objective	Introduction in System Theory, focused on control systems
7.2. Specific objectives	- Ability to modeland simulate continuous time and discrete time systems
	Stability analysis for controlsystems
	- Controller design - Performance assesment for control systems

8.1. Lectures[chapters]	Teaching techniques	Observations
Systematic exposition	lecture. Heuristic conversation. Critical	2 hours
	analysis. Examples	
Signals and systems. Definition, classification.	Systematic exposition - lecture. Heuristic	1 hour
Operations with signals. System models.	conversation. Critical analysis. Examples	
State variable models	Systematic exposition - lecture. Heuristic	1 hour
	conversation. Critical analysis. Examples	
Characteristics of Feedback control systems	Systematic exposition - lecture. Heuristic	1 hour
	conversation. Critical analysis. Examples	
Performances of Feedback control systems	Systematic exposition - lecture. Heuristic	1 hour
	conversation. Critical analysis. Examples	
Stability of Feedback control systems	Systematic exposition - lecture. Heuristic	1 hour

	conversation. Critical analysis. Examples	
Root locus	Systematic exposition - lecture. Heuristic	1 hour
	conversation. Critical analysis. Examples	
Stability in the frequency domain	Systematic exposition - lecture. Heuristic	1 hour
	conversation. Critical analysis. Examples	
Methods of control systems design	Systematic exposition - lecture. Heuristic	2 hours
	conversation. Critical analysis. Examples	
Design of the state feedback systems	Systematic exposition - lecture. Heuristic	1 hour
	conversation. Critical analysis. Examples	
Discrete time control systems	Systematic exposition - lecture. Heuristic	2 hours
	conversation Critical analysis Examples	

Bibliography:

1. A. Oppenheim, Signals and systems, Prentice-Hall, 1997

2. Richard C. Dorf and Robert H. Bishop, Modern control systems, 12th ed., Pearson Education, Inc, 2011

3. G. Franklin, D. Powell, M. Workman, Digital control of dynamic systems, Ellis Kagle Press, 1998.

4. K. Astrom and T. Hagglund, PID controllers, 2nd ed, Instruments Society of America, 1995.

5. B. Kuo, Automatic control systems, Prentice Hall Inc. 1975

6. Mihai P. Dinca, Complemente de Electronica, Editura Universitatii din Bucuresti, 2000.

7. Adriana Teodorescu – Teoria sistemelor automate, Editura Politehnica, Timişoara, 2003

/		
8.2. Tutorials	Teaching and learning techniques	Observations
Bibliography:		
8.3. Practicals	Teaching and learning techniques	Observations

8.3. Practicals	Teaching and learning techniques	Observations
Modeling of linear systems. Conversion between	Group working using a dedicated software	2 hours
different representations	(Labview, Octave)	
The efeect on the poles and zeros location on the	Group working using a dedicated software	4 hours
transient response of a SISO LTI system	(Labview, Octave)	
The efeect on the poles and zeros location on the	Group working using a dedicated software	4 hours
frequency response of a SISO LTI system.	(Labview, Octave)	
The root locus method	Group working using a dedicated software (Labview, Octave)	4 hours
Stability study in the frequency domain	Group working using a dedicated software (Labview, Octave)	2 hours
System identification applied to an existing physical	Group working using a dedicated software	2 hours
system (temperature control using Peltier	(Labview, Octave)	
thermoelectric modules)		
Design and implementation of a PID controller for	Group working using a dedicated software	4 hours
the temperature control system	(Labview, Octave)	
Performance assesment for the realized temperature	Group working using a dedicated software	6 hours
control system	(Labview, Octave)	
Bibliography:		
N. Nise Control systems engineering, Willey 2004		
Astrom and T. Hagglund, PID controllers, 2nd ed, Inst	ruments Society of America, 1995.	
8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit forms/develops competences and abilities which are important for an undergraduate student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the United States. Following one of the most succesfull textbook (Dorf & Bishop), the contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, secondary school teaching

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark	
10.4. Lecture	 - coherence and clarity of exposition - correct use of equations/mathematical methods/physical models and theories - ability to indicate/analyse specific examples 	Written test	75%	
10.5.1. Tutorial				
10.5.2. Practical	 ability to use specific experimental methods/apparatus ability to perform/design specific experiments ability to present and discuss the results 	Lab reports, continuos assesment	25%	
10.5.3. Project				
10.6. Minimal requirements for passing the exam All practical activities must be finalized, At least 5.0 poins (out of 10) for both written test and laboratory activities.				

Date 8.11.2021	Teacher's name and signature Assoc. Prof. Mihai Dinca	Practicals/Tutorials instructor(s) name(s) and signature(s) Assoc. Prof. Mihai Dinca

Date of approval 11.11.2021

Head of Department Assoc. Prof. Adrian Radu

DO.213F.1.EN Virtual instrumentation and data acquisition

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid state and Biophysics
1.4.Field of study	Physics
1.5.Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Virtual instru	Virtual instrumentation and data acquisition					
2.2. Teacher			Assoc. Prof. Adrian RADU					
2.3. Tutorials/Practicals instructor(s)		Assoc. Prof. Adrian RADU						
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content ¹⁾	DS
	2		4	evaluation	Е	Classification of course unit	Type ²⁾	DO

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	0	Practicals	2	Project	0
3.2. Total hours per semester	56	distribution:	Lectures	28	Tutorials	0	Practicals	28	Project	0
3.3 Distribution of estimated time for study						hours				
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						10				

3.3.2. Research in library, study of electronic resources, field research			10
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks			20
3.3.4. Examination			4
3.3.5. Other activities			
3.4. Total hours of individual study	40		
3.5. Total hours per semester	100		
3.6. ECTS 4			

4. Prerequisites (if necessary)

4. Freiequisites (if necessary)			
4.1. curriculum			
4.2. competencies			

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (video projector, PC). Lecture notes.	
	Recommendedbibliography.	
5.2. for practicals/tutorials/projects	Lab room, experimental setups, powersupplies, measurementinstruments,	
	oscilloscopes	

6. Specific competences acquired

or opposition compe	
Professional	C1. The identificationandtheappropriateuse of themain computer skills.
competencies	C2. The use of suitable software packages for data analysisandprocessing.
	C3. Solvingphysicsproblemsundergivenconditionsusing PC for analytical, numerical, and
	statisticalmethods.
	C5. The abilitytoanalyzeandtocommunicate he didactic, scientificand popularization information of
	Physics.
Transversal	CT3 - The efficientuse of theinformationsourcesandthecommunicationand
competencies	professionaldevelopmentresources in Romanian Institute and a widelyusedforeignlanguage (English),
	as well.

7. Course objectives

7.1. General objective	* Knowledgeandunderstanding: knowledgeandappropriateuse of the specific notions of
	informatic system.
	* Achieving a thoroughtheoreticalknowledge.
	* Gainingcomputationskills.
7.2. Specific objectives	* Knowledgeandappropriateuse of the fundamental concepts of
	mathematicalandinformaticalanalysis.
	* Developingtheabilitytowork in a team.
	* Developingcomputationalskills.
	* The use of LabView software for dealingwithdifferent software solutions.

8. Contents

8.1. Lectures[chapters]	Teaching techniques	Observations
Experimental techniques in modern physics. Sensors and	Systematicexposition -	2 hours
data acquisition	lecture. Examples.	
Software applications – LabVIEW programming	Systematicexposition -	12 hours
package. Virtual instruments. G programming language:	lecture. Examples.	
data types, structures, I/O operations.		
VISA architecture. GPIB and RS485 buses.	Systematicexposition -	6 hours
	lecture. Examples.	
Data acquisition and processing in physics experiments.	Systematicexposition -	8 hours
Hardware configurations.	lecture. Examples.	

Bibliography:

1. G Programming Reference Manual, National Instruments.

2. L. Ion, Course notes (slides)

3. R.Baican, D.S. Necsulescu, Applied Virtual Instrumentation (WIT Press, Southampton, UK, 2000)

8.2. Tutorials	Teaching and learning techniques	Observations
Bibliography:		
8.3. Practicals	Teaching and learning techniques	Observations
Introduction to graphical programming. Front panel and diagrams.	Guided practical activity	4 hours
Virtual instruments. Design and configuration.	Guided practical activity	2 hours
Graphics and text. I/O operations.	Guided practical activity	10 hours
Data acquisition and processing modules	Guided practical activity	12 hours
Bibliography:		
8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad. The content of the discipline is in line with the standards used in research and industry. This course unit develops some theoretical and practical competences and abilities, which are important for an undergraduate student in the field of modern Physics, corresponding to national and international standards. The contents and teaching methods were selected after a thorough analysis of the contents.

10. Assessment

Activity type	10.1 Assessment criteria	10.2. Assessment	10.3. Weight in		
reavity type		methods	final mark		
10.4. Lecture	- ability to use specific programming	Design and implementation	70%		
	and data processing techniques	of a virtual instrument			
10.5.1. Tutorial					
10.5.2. Practical	-ability to use specific programming	Development of specific	30%		
	techniques	modules			
	- ability to present and discuss the				
	results				
10.5.3. Project					
10.6. Minimal requirements for passing the exam					
Completion of all laboratory work and assessment with a grade of 5 at the final exam					
Obtaining a grade of 5 at the laboratory colloquium.					

Date
8.11.2021Teacher's name and signature
Assoc Prof. Adrian RADUPracticals/Tutorials instructor(s)
name(s) and signature(s)
Assoc Prof. Adrian RADUDate of approvalHead of Department

Date of approval 11.11.2021

Head of Department Assoc Prof. Adrian RADU

DO.213F.2EN. Plasma physics and applications

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma and Lasers

1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Plasma Physi	ics and A	Application				
2.2. Teacher			Lect. Dr. Dragoş	Iustin	PALADE			
2.3. Tutorials/Practicals instructor(s)			Lect. Dr. Dragoș Iustin PALADE					
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content ¹⁾	DS
	2		2	evaluation	E	Classification	Type ²⁾	DO
						of course unit	-5 F -	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	0	Practicals	2	Project	0
3.2. Total hours per semester	56	distribution:	Lectures	28	Tutorials	0	Practicals	28	Project	0
3.3 Distribution of estimat	ed tin	ne for study	•		•		•			hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				14						
3.3.2. Research in library, study of electronic resources, field research					12					
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks					14					
3.3.4. Examination				4						
3.3.5. Other activities				0						
3.4. Total hours of individual study 40										
3.5. Total hours per semes	ter			1	100]				

26	FCTS	
J.D.	LCIS	

4. Prerequisites (if necessary)

4.1. curriculum	Optics, Electricity and Magnetism, Molecular Physics, Atomic Physics
4.2. competencies	Computer programming

4

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia equipped class (video-projector)
	Recommended bibliography
5.2. for practicals/tutorials/projects	Experimental setup fro the Laboratory of Plasmas Physics.
	Recommended bibliography

6. Specific competences acquired

-	1 1			
P	rofessional	To develop the ability to properly use the notions of plasma physics;	- To dev	
c	ompetencies	To acquire skills and experimental techniques in the study of various types of plasmas.	- To acq	
		To identify and choose the various types of plasmas suitable for their technological applications-	- To ide	
		dentification and appropriate use of main laws and principles of physics in a given context.	Identific	
T	ransversal			
c	ompetencies	Show concern for professional development by training critical thinking skills;	- Show	
	-	Show involvement in scientific activities, such as the development of specialized articles and	- Show	
		tudies;	studies;	
		The ability to work in teams;	- The at	

7. Course objectives

7.1. General objective	Understanding the role of plasma phenomena in fundamental knowledge and applied science
7.2. Specific objectives	Objectiv 1: Fundamental knowledge.
	The students will be competent in the physical and mathematical fundamentals of plasma
	applications, enabling them to address the issues of plasma physics conceptual, analytical,
	numerical and experimental.
	Objectiv 2: Practical.

Students will get skills on plasma techniques needed to overcome the technical challenges of
the future.
Objectiv 3: Design and development.
Students will be able to project a new plasma discharge experimental set-up in a
multidisciplinary team.
Objectiv 4: Communication.
Students will be able to communicate scientific and technical information orally or in written
and graphic form
Objectiv 5: Behavior.
Students will act ethically and will assess the impact of plasma sciencies on society, economy
and environment.

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
Introduction.	Systematic exposition -	4 h
The plasmas in space and in the Laboratory. What is	lecture. Heuristic	
plasma? Plasma vs ionized gases Debye length, plasma	conversation. Examples	
frequency, quasineutrality.		
The elementary processes and the plasma equilibrium.	Systematic exposition -	4 h
Transport phenomena in plasma	lecture	
Interaction between plasma and electromagnetic waves	Systematic exposition -	2 h
	Lecture	
The physical models for plasmas. Fluid models. Kinetic	Systematic exposition -	4 h
description of plasmas	Lecture	
Breakdown and ignition Electrical breakdown. Optical	Systematic exposition -	2 h
breakdown	Lecture	
Plasma Sources Glow discharge plasma. RF plasma.	Systematic exposition -	4 h
Microwaves plasma. Fusion plasma. Other plasma	Lecture	
sources.		
Plasma Diagnostics Electrical Methods. Optical	Systematic exposition -	4 h
Methods	Lecture	
The plasma & technologies	Systematic exposition -	4 h
	Lecture	

Bibliography:

Bibliografie:

I.I. Popescu, D. Ciobotaru.- Bazele fizicii plasmei, Editura Tehnică. București 1987

I.I.Popescu, I.Iova E.I. Toader, - Fizica plasmei și aplicații, Editura Științifică și Enciclopedică.București, 1981 I.Iova, I.I.Popescu, E.I. Toader, - Bazele spectroscopiei plasmei, Editura Stiintifica si Enciclopedica, Bucuresti, 1983 Gh. Popa,-Fizica plasmei, www.phys.uaic.ro

M. A. Lieberman, A. J. Lichetenberg - Principles of Plasma Discharges and Materials Processing, John Wiley, New York, 1994

B. Chapman, - Glow Discharges Processes – Sputtering and Plasma Etching. John Wiley & Sons, New York, 1980 Y.P.Raizer - Gas Discharge Physics, Springer-Verlag, Berlin, 1991

R.Dendy (editor) Plasma Physics: an Introductory Course, Cambridge University Press, 1999

R. Huddlestone, S. L. Leonard (editors) - Plasma Diagnostic . Techniques, Academic Press, New York, 1965 Lochte Holtgreven (editor) - Plasma Diagnostics, Amsterdam, North-Holland, 1968

8.2. Tutorials	Teaching and learning techniques	Observations

Bibliography:

8.3. Practicals	Teaching and learning techniques	Observations
Vacuum Technology	Guided practical activity	2h
Electrical Breakdown. Pachen's law	Guided practical activity	2h
Electrical Breakdown in magnetic fields	Guided practical activity	2h
Parametric analysis of plasma	Guided practical activity	2h
Arc Plasmas	Guided practical activity	2h
Glow Discharge Plasma;	Guided practical activity	2h

Electric RF discharge	Guided practical activity	2h
Plasma conductivity measurements	Guided practical activity	2h
Diagnostic of the electronic temperature and electronic	Guided practical activity	2h
density via simple electric methods: the Langmuir		
probe.		
Diagnostic of the electronic temperature and electronic	Guided practical activity	2h
density via electric methods: the Double Langmuir		
probe.		
Optical emission spectroscopy for electronic	Guided practical activity	2h
temperature plasma diagnostic		
Plasma jet at atmospheric pressure	Guided practical activity	2h
Reflex plasma reactor	Guided practical activity	2h
Testing the acquired knowledge on practicals	Conversation	2h

Bibliography:

V. Covlea, H. Andrei - Diagnosticarea plasmei - Lucrări de laborator, Editura Universității din București, 2001 D. Ciobotaru, V. Covlea, C. Biloiu - Gaze ionizate - lucrări de laborator, Editura Universității din București, București, 1992 (in romanian)

C. Negrea, V. Manea, C. Vancea, A. Tudorica and V. Covlea – Ingineria plasmei, Editura Universitatii din Bucuresti, Bucuresti, 2011

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competences and abilities which are important for an undergraduate student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Cambridge University). The contents are in line with the

requirements/expectations of the main employers of the graduates (industry, research, secondary school teaching -National Institute for Laser, Plasma and Radiation Physics, National Institute of Materials Physics, National Institute for Nuclear Physics, National Institute for Opto-Electronics).

A ctivity type	10.1 Accossment criteria	10.2. Assessment	10.3. Weight in
Activity type	10.1. Assessment criteria	methods	final mark
10.4. Lecture	- coherence and clarity of exposition	Final written evaluation:	60%
	- correct use of equations/mathematical	Final oral exam	
	methods/physical models and theories		
	- ability to indicate/analyze specific		
	examples		
10.5.1. Tutorial			
10.5.2. Practical	- ability to use specific experimental	Written exam and group	40%
	methods/apparatus - ability to	interview	
	perform/design specific experiments -		
	ability to present and discuss the results		
10.5.3. Project	- Clarity and coherence of the	Oral presentation	ADMITTED/
	presentation;		REJECTED
	- Interpretation of results;		
	- Correctness of answers;		
10.6. Minimal requirements	s for passing the exam		
_			
The ADMITTED grade for	the project		
A grade of 5 or higher in th	e practical evaluation		
A grade of 5 or higher in th	e theoretical knowledge test.		

10. Assessment

Date 25.10.2021 Teacher's name and signature Lect. Dr. Dragoș Iustin Palade Practicals/Tutorials instructor(s) name(s) and signature(s) Lect. Dr. Dragoş Iustin Palade

DO.306F.1.EN Methods and techniques of presenting the results in physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma, Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Methods and	Methods and techniques of presenting the results in physics					
2.2. Teacher			Lect.dr. Roxana ZUS					
2.3. Tutorials instructor								
2.4. Practicals instructor			Asist.drd. Andreea Mihaela CROITORU					
2.5. Year of study		2.6. Semester		2.7. Type of		2.8.	Content 1)	DC
	3		V	evaluation C Classification True ²			Type 2)	DO
						of course unit	Type	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	2	distribution:	Lectures	1	Tutorials		Practicals	1	Project	
3.2. Total hours per	28	distribution:	Lectures	14	Tutorials		Practicals	14	Project	
semester									5	
3.3 Distribution of estimat	ed tin	ne for study								hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 1							11			
3.3.2. Research in library, study of electronic resources, field research							12			
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks							20			
3.3.4. Examination							4			
3.3.5. Other activities										
3.4. Total hours of individual study 43										
3.5. Total hours per semester 75										
3.6. ECTS 3										

4. Prerequisites (if necessary)

4.1 curriculum	
4.1. Culliculuiii	
4.2. competencies	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Lecture hall with computer and video projector, computers network
	Lecture notes
	Bibliography
5.2. for practicals/tutorials/projects	Laboratory with computer and video projector, computers network
	Lecture notes
	Bibliography

6. Specific competences acquired

Professional competencies	 Using of software for data analysis and visualization Communication and analysis of didactic, scientific and popularization information in physics Interdisciplinary approach of some topics in physics
Transversal competencies	 Performing professional tasks efficiently and responsibly in compliance with the legislation and the deontology specific to the field under qualified assistance. Effective use of information sources, communication and training resources in a foreign language

7. Course objectives

7.1. General objective	Acquiring the techniques of redaction, processing and presentation of the results in physics
7.2. Specific objectives	 Understanding the specific problems and of structure of different types of scientific works and presentations Forming of DTP skills Forming of skills of processing and graphical presentation of scientific data Forming of skills of presenting results in a scientific work

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
Structure of a scientific work; examples in physics		
Scientific report – characteristics and main elements		
Extended scientific works :	Case study Guided work	3 hours
– characteristics and main elements of a thesis	Case study. Guided work	5 110013
Scientific paper		
characteristics and main elements		
Examples of themes in physics for the project	Case study. Guided work	1 hour
Techniques of redaction		1 hour
presentation of the editing software for scientific works.		1 11001
Introduction in LaTeX		
Installing		
basic instructions	Case study. Guided work	4 hours
math symbols, tables, graphics		
packages, classes, documents		
Graphical representation, animations, videos;	Case study Guided work	3 hours
applications in physics	Case study. Guided work	5 10013
Structure of a scientific presentation		
installing and using beamertex	Case study. Guided work	2 hours
designing a poster presentation		

Bibliography:

- Helmut Kopka, Patrick W. Daly, "A Guide to LATEX" (Fourth edition), Addison-Wesley, 2003

- Donald Knuth, "The TEXbook", Addison-Wesley, Reading MA, 1984

- Tobias Oetiker, Hubert Partl, Irene Hyna, Elisabeth Schlegl, "The Not So Short Introduction to LATEX 2ε"

- Harold Rabinowitz; Suzanne Vogel "The manual of scientific style : a guide for authors, editors, and researchers" Academic Press/Elsevier 2009

 Michael Alley The Craft of Scientific Presentations Springer2007
 John M. Swales, Christine B. Feak, Academic Writing for Graduate Students: Essential Tasks and Skills - A Course for Nonnative Speakers of English University of Michigan Press, 1994

8.2. Tutorials	Teaching and learning techniques	Observations
Bibliography:		
8.3. Practicals	Teaching and learning	Observations

	techniques	
Bibliography:		
Q 4 Droigst	Teaching and learning	
0.4. Project	techniques	Observations
Introduction in LaTeX		
Installing		
basic instructions	Case study. Guided work	5 hours
math symbols, tables, graphics		
packages, classes, documents		
Structure of a scientific work; examples in physics		
Characteristics and main elements of a thesis	Case study. Guided work	2 hours
Scientific paper - characteristics and main elements		
Writing a scientific paper	Documentation. Case study. Guided work	3 hours
Designing of a scientific presentation	Documentation Case study	
Installing beamertex	Cuided work	2 hours
Design / structure of a scientific poster		
Analysis of the results	Documentation. Case study.	2 hours

Bibliography:

Helmut Kopka, Patrick W. Daly, "A Guide to LATEX" (Fourth edition), Addison-Wesley, 2003

Donald Knuth, "The TEXbook", Addison-Wesley, Reading MA, 1984

- Tobias Oetiker, Hubert Partl, Irene Hyna, Elisabeth Schlegl, "The Not So Short Introduction to LATEX 2ε"
- Harold Rabinowitz; Suzanne Vogel "The manual of scientific style : a guide for authors, editors, and researchers" Academic Press/Elsevier 2009
- Michael Alley "The Craft of Scientific Presentations" Springer, 2007
- John M. Swales, Christine B. Feak, Academic Writing for Graduate Students: Essential Tasks and Skills

A Course for Nonnative Speakers of English University of Michigan Press, 1994

- Stefan Kottwitz, "Latex Beginner's Guide" (Second edition), Packt Publishing Ltd., 2021
- George Grätzer, "More math into Latex", (Fifth edition), Springer, 2016

Di Dilip Datta, "LATEX in 24 Hours - A Practical Guide for Scientific Writing", Springer, 2017

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements of the University of Bucharest and of other national/international requirements for presentation of scientific works.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in
10.4. Lecture	- coherence and clarity of exposition	Written test/oral examination	40%
	- ability to indicate/analyze specific		
	examples		
10.5.1. Tutorials			
10.5.2. Practicals			
10.5.3. Project [only if included in syllabus]	 coherence and clarity of exposition correct use of techniques/ methods ability to present and discuss the scientific paper and presentation 	Report	60%
10.6. Minimal requirements for	or passing the exam		

Requirements for mark 5 (10 points scale)

Frequency: 50% lecture attendance and attendance to 70% of applied activities (project).

Correct presentation of 50% of theoretical subjects at the final examination.

Passing the project presentation.

Requirements for getting mark 10 (10 points scale)

Correct answer to all the subjects indicated for obtaining grade 10 Skills, well-argued knowledge Demonstrated ability to analyze phenomena and processes Personal approach and interpretation.

Date 03.11.2021

Teacher's name and signature Lect.dr. Roxana Zus

Date of approval 11.11.2021

Practicals/Tutorials instructor(s) name(s) and signature(s) Asist. drd. Andreea Croitoru

Head of Department Lect.dr. Roxana Zus

DO.306F.2.EN History of physics

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma, Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		History of ph	History of physics					
2.2. Teacher			Prof.univ.dr. Vir	Prof.univ.dr. Virgil BĂRAN				
2.3. Tutorials instructor	2.3. Tutorials instructor							
2.4. Practicals instructor			Prof.univ.dr. Virgil BĂRAN					
2.5. Year of study		2.6. Semester		2.7. Type of		2.8.	Content ¹⁾	DC
	3		V	evaluation	С	Classification	Type ²⁾	DO
						of course unit	турс	50

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	2	distribution:	Lectures	1	Tutorials		Practicals	1	Project	
3.2. Total hours per semester	28	distribution:	Lectures	14	Tutorials		Practicals	14	Project	
3.3 Distribution of estimat	ed tim	e for study	I		I		l			hours
3.3.1. Learning by using o	ne's o	wn course notes	, manuals,	lecture	notes, bibliog	grap	hy			11
3.3.2. Research in library, study of electronic resources, field research 12						12				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks 20						20				
3.3.4. Examination 4						4				
3.3.5. Other activities										
3.4. Total hours of individual study 43										
3.5. Total hours per semester 75										
3.6 ECTS 3										

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Lecture hall with computer and video projector, computers network
	Lecture notes

	Bibliography
5.2. for practicals/tutorials/projects	Laboratory with computer and video projector, computers network
	Lecture notes
	Bibliography

6. Specific compe	tences acquired
Professional competencies	 Using of software for data analysis and visualization Communication and analysis of didactic, scientific and popularization information in physics Interdisciplinary approach of some topics in physics
Transversal competencies	 Performing professional tasks efficiently and responsibly in compliance with the legislation and the deontology specific to the field under qualified assistance. Effective use of information sources, communication and training resources in a foreign language

7. Course objectives

· · · · · · · · · · · · · · · · · · ·	
7.1. General objective	Understanding the development of the main ideas in physics
7.2. Specific objectives	-Understanding the connection of physics with other sciences thorough
	the stages of development from antiquity toward modern physics
	-Forming of skills of processing and graphical presentation of scientific data
	related to the history of physics
	-Forming of skills of presenting results in a scientific work

8. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
1. Introductory lecture: why physics is a key science:		
the connection of physics with other	Case study. Guided work	2 hours
sciences and branches of human knowledge.	-	
2. The history of mechanics: the main stages from		
antiquity to present time; the transition from classical to	Case study Guided work	2 hours
relativistic mechanics of Einstein and Poincare	Case study. Guided work	2 110015
2Examples of themes in physics for the project		
3.The evolution of optics: the stages towards the		
present understanding of the light; from geometrical		
optics through undulatory optics and	Case study. Guided work	2 hours
electromagnetism to photon . Applied optics and the		
evolution of human knowledge.		
4. The history of electrodynamics: the main stages of		
evolution until the Maxwell theory.	Case study Guided work	2 hours
Light as an electromagnetic wave and the transition	Case study. Guided work	2 110013
to Einstein relativity		
5. The history of quantum mechanics: the		
experimental revolution at the beginning of		
twenty century; the stages towards the rigorous theory	Case study Guided work	2 hours
of the quantum phenomena. The interplay between	Case study. Guided work	2 110013
quantum mechanics and relativity and the physical field		
concept, particles versus antiparticles.		
6. The development of thermodynamics and		
statistical mechanics: thermal phenomena and		
crystallization of the principles of thermodynamics.		
From classical to quantum statistical mechanics;	Case study. Guided work	2 hours
the phase transitions from Andrews experiments to		
renormalization group theory of K. Wilson.		
Statistical physics, information and life phenomena.		
7. Physics in the XX-th century: the physics of the	Case study. Guided work	2 hours
fundamental interactions and of the elementary particles,		

condensed matter physics, nuclear physics, cosmology							
and astrophysics, the physics of earth, biophysics and							
Bibliography:							
1 The Cambridge Companion to Calileo Calilei Isaac Ne	wton C. Leibniz Cembridge Univer	rcity Drocc					
2. D Mitteletaedt D A Waingarther Laws of Natura Sprin	ager Verlag, Berlin Heidelberg, 2005	Sity Fless					
3 E Mach Macanica Expunera istorică și critică a dezv	lger verlag, Derni Heiderberg, 2005						
A C Cercignani Ludwig Boltzmann Editura Tehnica	fitti il el, Eultura Ali						
5 F Wilczek The lightness of heing: mass ether and the	unification of forces Persons 2008						
6 M yon Laue History of Physics Pergamonn Press	anification of forces, refscus, 2000						
7 I Baggott The quantum story Oxford University Press	2011						
8 W Applebaum The scientific revolution and the foundation	tions of modern science Greenwood	Press 2005					
9. T.S. Kuhn, <i>Structura Revolutiilor Stiintifice</i> , Editura Hu	manitas	11000, 2000					
10. M. Born, <i>Physics in my generation</i> , Springer-Verlag N	ew York Inc.						
11. K. Simony, A cultural history of physics							
12. Virgil Baran – Istoria Fizicii-Note de curs in format ele	ectronic (2019)						
8.2. Tutorials	Teaching and learning	Ohannatiana					
	techniques	Observations					
Bibliography:							
	Teaching and learning						
8.3. Practicals	techniques	Observations					
1. Selecting the subjects fromhistory of physics for the							
scientific work General notion for scientic work writing.							
Scientific report – characteristics and main elements;	Documentation. Case study.	1 h aug					
extended scientific works : -characteristics and main	Guided work	1 nour					
elements of a thesis							
scientific paper- characteristics and main elements							
2. Development of mechanics: the contributions	Documentation Case study						
of Galileo Galilei, Isaac Newton, Henry Poincare, Albert	Guided work	2 hours					
Eistein Guided work							
3. Elaborating a scientific work in the history of physics:							
organization, the conclusions. Structure of a scientific	Guided work	1 hour					
work : examples from history of physics.							
4. Development of electrodynamics: the contribution of							
Benjamin Franklin, Charles-Augustin de Coulomb,	Documentation. Case study.						
Andre-Marie Ampere, Han Christian Oersted, Jean	2 hours						
Baptiste Blot, Felix Savart, Michael Faraday, James							
Clerk MdXwell							
optics, phonomena and interpretation. Distoclastric							
offect and wave-corpuscle, complementarity	Documentation. Case study.	2 hours					
The milectones towards the first important unification in	Guided work	2 110013					
nhvsics							
6 Development of thermodynamics and statistical							
mechanics the contributions of L. Boltzmann I.C.	Documentation. Case study.	2 hours					
Maxwell, J. W. Gibbs, L. Landau, K. Wilson	Guided work						
7. Development of quantum mechanics: contribution of							
M. Plank, N. Bohr, M. Born, W. Heisenberg, P.A. M.	Documentation. Case study.	2 hours					
Dirac	Guided work						
8. Elaboration of the scientific presentation for Documentation. Case study.							
colloquium. Guided work							
9. Analysis of the results, discussion, interpretation of Documentation. Case study.							
the results, perspectives.	Guided work	1 11001					
Bibliography:							
1. The Cambridge Companion to Galileo Galilei, Isaac Newton, G. Leibniz, Cambridge University Press							
2. P. Mittelstaedt, P. A. Weingartner, Laws of Nature, Springer Verlag, Berlin Heidelberg, 2005							
3. E. Mach, Mecanica. Expunere istorică și critică a dezvoltării ei, Editura All							

4. C. Cercignani, Ludwig Boltzmann, Editura Tehnica

5. F. Wilczek, The lightness of being: mass, ether and the unification of forces, Perseus, 2008

6. M. von Laue, History of Physics, Pergamonn Press

7. J. Baggott, The quantum story, Oxford University Press, 2011

8.W. Applebaum, The scientific revolution and the foundations of modern science, Greenwood Press, 2005

9. T.S. Kuhn, Structura Revolutiilor Stiintifice, Editura Humanitas

10. M. Born, Physics in my generation, Springer-Verlag New York Inc.

11. K. Simony, A cultural history of physics

12. Virgil Baran – Istoria Fizicii-Note de curs in format electronic (2019)

8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements of the University of Bucharest and of other national/international requirements for presentation of scientific works.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark		
10.4. Lecture	 coherence and clarity of exposition ability to indicate/analyze specific examples 	Written test/oral examination	50%		
10.5.1. Tutorials					
10.5.2. Practicals	 coherence and clarity of exposition correct use of techniques/ methods ability to present and discuss the scientific paper and presentation 	Periodic evaluation/Report	50%		
10.5.3. Project [only if					
included in syllabus]					
10.6. Minimal requirements for passing the exam					

Requirements for mark 5 (10 points scale)

Frequency: 50% lecture attendance and attendance to 70% of applied activities (project).

Correct presentation of 50% of theoretical subjects at the final examination.

Passing the project presentation.

Requirements for mark 10 (10 points scale)

Correct presentation of the scientic work and of the project presentation at colloquium, appropriate interpretation of the results, correct answersto all questions.

Date	Teacher's name and signature	Practicals/Tutorials instructor(s)
03.11.2021	Prof.dr. Virgil BĂRAN	Prof. dr. Virgil BĂRAN
Date of approval	Не	ad of Department

11.11.2021

Lect.dr. Roxana Zus

DO.307F.1.EN Numerical methods in quantum mechanics

1. Study program 1.1. Universi

t	у	University of Bucharest

1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Numerical m	Numerical methods in quantum mechanics					
2.2. Teacher	Lect. Dr. Dragoş Iustin PALADE							
2.3. Tutorials/Practicals instructor(s) Conf. Dr. Mădălina BOCA								
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content ¹⁾	DS
	3		6	evaluation	Е	Classification	Type ²⁾	DO
						of course unit	1,100	50

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	5	distribution:	Lectures	2	Tutorials	1	Practicals	2	Project	0
3.2. Total hours per	50	distribution:	Lectures	20	Tutorials	10	Practicals	20	Project	0
semester									-	
3.3 Distribution of est	imate	d time for study								hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 2						20				
3.3.2. Research in library, study of electronic resources, field research							21			
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks 30						30				
3.3.4. Examination							4			
3.3.5. Other activities 0						0				
3.4. Total hours of individual study 71						•				
3.5. Total hours per se	meste	r			125	1				

3.6. ECTS

4. Prerequisites (if necessary)

4.1. curriculum	Courses: Processing of physical data and numerical methods, Quantum mechanics, Algebra
4.2. competencies	Computer programming

5

5. Conditions/Infrastructure (if necessary)

or conditions, million detaile (in necess	
5.1. for lecture	Multimedia equipped class (video-projector, whiteboard)
	Recommended bibliography
5.2. for practicals/tutorials/projects	Computer laboratory

6. Specific competences acquired

Professional	Identify and properly use the main laws and physical principles in a given context
competencies	Communication and analysis of information of a didactic, scientific and popularization nature in the
	field of Physics
Transversal competencies	Efficient use of information sources and resources of communication and assisted professional training, both in Romanian and in a language of international circulation.

7. Course objectives

7.1. General objective	Numerical solutions to a number of problems arising in quantum mechanics
7.2. Specific objectives	Developing the ability to write programs to find numerical solutions to quantum mechanics
	problems

8.1. Lectures [chapters]	Teaching techniques	Observations
Microparticle in the 1D infinite potential well: solutions	Systematic exposition -	2 h
to the Schrodinger equation	lecture. Heuristic	
	conversation, proof, case study. Examples	
--	--	---
Linear harmonic oscillator: eigenfunction of the energy	Systematic exposition -	2 h
operator and their Fourier transform. Non-stationary	lecture. Heuristic	
probability Wavepackage evolution for a free particle	Conversation, proor, case study. Examples	
Hydrogen atom: radial eigenfunctions of the energy	Systematic exposition -	2 h
operator. The analysis of the l=n-1 case; the radial	lecture. Heuristic	
function and the calculus of probability density maxima.	conversation, proof, case study. Examples	
3D isotropic harmonic oscillator using spherical	Systematic exposition -	2 h
coordinates. Infinite spherical potential well	lecture. Heuristic	
	conversation, proof, case study. Examples	
Numerov's method	Systematic exposition -	2 h
	lecture. Heuristic	
	conversation, proof, case study. Examples	
Anarmonic linear oscilator. Posch-Teller potential	Systematic exposition -	2 h
	conversation proof case study Examples	
Kronig – Ponnov's model	Systematic expectition -	2 h
Riong – renney s moder	lecture Heuristic	2 11
	conversation, proof, case study. Examples	
The variational method	Systematic exposition -	2 h
	lecture. Heuristic	
	conversation, proof, case study. Examples	
Using the variational method for the solutions of the He	Systematic exposition -	2 h
atom	lecture. Heuristic	
	conversation, proof, case study. Examples	
1D finite potential well: solving Schroedinger's	Systematic exposition -	2 h
equation.	lecture. Heuristic	
 Robert L. Zimmerman, Fredrick I. Olness, "Mathemati Company, 2002 Gerd Baumann, "Mathematica in Theoretical Physics", Mathematica: S.Wolfram, "Mathematica: a system for City, Calif., 1991 	ca For Physics: 2nd Edition", Addison-Wesley P Springer-Verlag New York, 1996 doing mathematics by computer", Addison-Wesl	Publishing
5. A. Messiah, "Mecanică cuantică", vol. I și II (editiile ir	n limba romana sau limba engleza)	ey, Redwood
5. A. Messiah, "Mecanică cuantică", vol. I și II (editiile ir 6. K. Konishi, G. Paffuti, "Quantum mechanics. A new in	n limba romana sau limba engleza) troduction", Oxford University Press, 2009	ey, Redwood
5. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir6. K. Konishi, G. Paffuti, "Quantum mechanics. A new in8.2. Tutorials	n limba romana sau limba engleza) troduction", Oxford University Press, 2009 Teaching and learning techniques	ey, Redwood
 5. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir 6. K. Konishi, G. Paffuti, "Quantum mechanics. A new in 8.2. Tutorials Proof of the Baker - Cambell - Hausdorf identity and other relationships involving operators 	a limba romana sau limba engleza) troduction", Oxford University Press, 2009 Teaching and learning techniques Systematic exposition, examples, exercises, problems	ey, Redwood Observations 2h
 5. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir 6. K. Konishi, G. Paffuti, "Quantum mechanics. A new in 8.2. Tutorials Proof of the Baker - Cambell - Hausdorf identity and other relationships involving operators Applications of canonical transformations 	a limba romana sau limba engleza) troduction", Oxford University Press, 2009 Teaching and learning techniques Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises,	ey, Redwood Observations 2h 4h
 5. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir 6. K. Konishi, G. Paffuti, "Quantum mechanics. A new in 8.2. Tutorials Proof of the Baker - Cambell - Hausdorf identity and other relationships involving operators Applications of canonical transformations 	a limba romana sau limba engleza) troduction", Oxford University Press, 2009 Teaching and learning techniques Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems	ey, Redwood Observations 2h 4h
 5. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir 6. K. Konishi, G. Paffuti, "Quantum mechanics. A new in 8.2. Tutorials Proof of the Baker - Cambell - Hausdorf identity and other relationships involving operators Applications of canonical transformations Applications of the variational method 	a limba romana sau limba engleza) troduction", Oxford University Press, 2009 Teaching and learning techniques Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems	ey, Redwood Observations 2h 4h 2h
 5. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir 6. K. Konishi, G. Paffuti, "Quantum mechanics. A new in 8.2. Tutorials Proof of the Baker - Cambell - Hausdorf identity and other relationships involving operators Applications of canonical transformations Applications of the variational method Hydrogen atom in the presence of a static and homogeneous electric field: finding the energy of the ground state using the variational method 	a limba romana sau limba engleza) troduction", Oxford University Press, 2009 Teaching and learning techniques Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems	ey, Redwood Observations 2h 4h 2h 2h 2h
 5. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir 6. K. Konishi, G. Paffuti, "Quantum mechanics. A new in 8.2. Tutorials Proof of the Baker - Cambell - Hausdorf identity and other relationships involving operators Applications of canonical transformations Applications of the variational method Hydrogen atom in the presence of a static and homogeneous electric field: finding the energy of the ground state using the variational method Bibliography: 	a limba romana sau limba engleza) troduction", Oxford University Press, 2009 Teaching and learning techniques Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems	ey, Redwood Observations 2h 4h 2h 2h 2h
 5. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir 6. K. Konishi, G. Paffuti, "Quantum mechanics. A new in 8.2. Tutorials Proof of the Baker - Cambell - Hausdorf identity and other relationships involving operators Applications of canonical transformations Applications of the variational method Hydrogen atom in the presence of a static and homogeneous electric field: finding the energy of the ground state using the variational method Bibliography: 1. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir 2. K. Konishi, G. Paffuti, "Quantum mechanics. A new in 	a limba romana sau limba engleza) troduction", Oxford University Press, 2009 Teaching and learning techniques Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems systematic exposition, examples, exercises, problems	ey, Redwood Observations 2h 4h 2h 2h 2h
 5. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir 6. K. Konishi, G. Paffuti, "Quantum mechanics. A new in 8.2. Tutorials Proof of the Baker - Cambell - Hausdorf identity and other relationships involving operators Applications of canonical transformations Applications of the variational method Hydrogen atom in the presence of a static and homogeneous electric field: finding the energy of the ground state using the variational method Bibliography: 1. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir 2. K. Konishi, G. Paffuti, "Quantum mechanics. A new in 	a limba romana sau limba engleza) troduction", Oxford University Press, 2009 Teaching and learning techniques Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems In limba romana sau limba engleza) troduction", Oxford University Press, 2009	ey, Redwood Observations 2h 4h 2h 2h 2h
 5. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir 6. K. Konishi, G. Paffuti, "Quantum mechanics. A new in 8.2. Tutorials Proof of the Baker - Cambell - Hausdorf identity and other relationships involving operators Applications of canonical transformations Applications of the variational method Hydrogen atom in the presence of a static and homogeneous electric field: finding the energy of the ground state using the variational method Bibliography: 1. A. Messiah, "Mecanică cuantică", vol. I şi II (editiile ir 2. K. Konishi, G. Paffuti, "Quantum mechanics. A new in 8.3. Practicals 	a limba romana sau limba engleza) troduction", Oxford University Press, 2009 Teaching and learning techniques Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems Systematic exposition, examples, exercises, problems himba romana sau limba engleza) troduction", Oxford University Press, 2009 Teaching and learning techniques	ey, Redwood Observations 2h 4h 2h 2h 2h

Bibliography:

1. P. Wellin, "Programming with Mathematica", Cambridge University Press, 2013

2. Robert L. Zimmerman, Fredrick I. Olness, "Mathematica For Physics: 2nd Edition", Addison-Wesley Publishing Company, 2002

3. Gerd Baumann, "Mathematica in Theoretical Physics", Springer-Verlag New York, 1996

4. K. Konishi, G. Paffuti, "Quantum mechanics. A new introduction", Oxford University Press, 2009

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching / learning methods, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad. The content of the discipline is in accordance with the requirements for employment in research institutes in physics and technology and in education (in accordance with the law).

10. Assessment

Activity type	10.1 Assessment criteria	10.2. Assessment	10.3. Weight in	
reavity type		methods	final mark	
10.4. Lecture	- Appropriate acquisition and correct	Final written exam	60%	
	understanding of the topics covered in			
	the course			
10.5.1. Tutorial	- Ability to solve problems of advanced	Homeworks	10 %	
	quantum mechanics			
10.5.2. Practical	- Ability to write codes in Mathematica	Colloquy	30 %	
	to solve a quantum mechanics problem			
10.6. Minimal requirements for passing the exam				

Attendance: attendance at a minimum of 50% of the number of course hours, attendance at a minimum of 75% of the number of seminar hours and 100% at the laboratory activity. Minimum 50% for each of the criteria that determine the final grade.

Date 10.11.2021

Teacher's name and signature Lect. Dr. Dragoş Iustin Palade Practicals/Tutorials instructor(s) name(s) and signature(s) Conf. Dr. Mădălina BOCA

Date of approval 11.11.2021

Head of Department Lector Dr. Roxana ZUS

DO.307F.2.EN Elements of quantum optics

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma, Lasers
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Elements of c	Elements of quantum optics					
2.2. Teacher				Associate prof. d	lr. Iulia	Ghiu		
2.3. Tutorials/Practicals instructor(s)			Associate prof. dr. Iulia Ghiu					
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DS
	3		6	evaluation	Е	Classification	Type ²⁾	DO
						of course unit	турс	00

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	5	distribution:	Lectures	2	Tutorials	1	Practical s	2	Proj.	
3.2. Total hours per semester	50	distribution:	Lectures	20	Tutorials	10	Practical	20	Proj.	
3.3 Distribution of estimat	ed tim	ne for study					5			hours
3.3.1. Learning by using o	ne's o	wn course notes	, manuals,	lecture	notes, biblio	graphy	7			24
3.3.2. Research in library, study of electronic resources, field research 22							22			
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks 2						25				
3.3.4. Examination 4						4				
3.3.5. Other activities										
3.4. Total hours of individual study 75										
3.5. Total hours per semester 125										
3.6. ECTS 5										

4. Prerequisites (if necessary)

· · · · · · · · · · · · · · · · · · ·	
4.1. curriculum	Quantum Mechanics, Optics, Algebra
4.2. competencies	A good level of algebra, geometry, trigonometry, real and complex analysis

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (video projector, PC).
5.2. for practicals/tutorials/projects	Laboratory

6. Specific competences acquired

Professional competencies	Using the law of physics in a proper way for a given problem. To be able to communicate and analyze the information from the lectures, from the scientific literature, as well as the information for popularization of physics.
Transversal competencies	Using in an efficient way the informational and communication resources in a foreign language.

7. Course objectives

7.1. General objective	Understanding the concepts of quantum optics, developing the ability of solving
	problems of quantum optics.
7.2. Specific objectives	Developing the ability of applying the principle of quantum mechanics and the
	formalism of quantum optics in order to understand complex problems of
	quantum optics.

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
Quantisation of the electromagnetic field	Systematic exposition – lecture. Heuristic	2 h
	conversation. Critical analysis. Examples	
Quasidistribution in phase-space: Glauber-Sudarshan	Systematic exposition – lecture. Heuristic	4 h
representation, Husimi function and Wigner function	conversation. Critical analysis. Examples	
Mono-mode squeezed states: definitions, properties,	Systematic exposition – lecture. Heuristic	4 h
phase-space representation. Photon bunching and	conversation. Critical analysis. Examples	
antibunching. Two-mode squeezed states		
Mono-mode thermal state: the quasidistribution	Systematic exposition – lecture. Heuristic	2 h
functions	conversation. Critical analysis. Examples	
The quantum description of the beam splitter.	Systematic exposition – lecture. Heuristic	2 h
Applications	conversation. Critical analysis. Examples	
Quantum communication with photons: quantum	Systematic exposition – lecture. Heuristic	4 h
teleportation, quantum cryptography	conversation. Critical analysis. Examples	
Interference fenomena in one or two photodetectors. The	Systematic exposition – lecture. Heuristic	2 h
Hong, Ou, Mandel experiment. Franson's experiment	conversation. Critical analysis. Examples	

Bibliography:

- 1. C. Gerry, P. Knight, Introductory Quantum Optics, Cambridge University Press, 2005.
- 2. M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge University Press, 2002.
- 3. Cohen-Tannoudji, Dupont-Roc, and Grynberg, Atom-Photon Interactions, Wiley, 1998.
- 4. D. F. Walls, G. J. Milburn, Quantum Optics, Springer Verlag, 1994.
- 5. C. W. Gardiner, Quantum Noise, Springer Verlag, 1991.

6. M. D. Al-Amri, M. M. El-Gomati, M. S. Zubairy (Editors), Optics in Our Time, Springer Open, 2016.

of hit Briti Finnig hit hit Er Comad, hit of Eddang (Eddolo), opieco in our Finne, opiniger open, 2010.					
8.2. Tutorials	Teaching and learning techniques	Observations			
Mixed states of a two-level system. Bloch sphere	Problem solving. Guided work	2 h			
Coherent states: definitions, properties, phase-space	Problem solving. Guided work	2 h			
representation					
Inseparability in quantum mechanics. Condition for a	Problem solving. Guided work	2 h			
two-photon state to be entangled					
Bell inequalities in quantum optics	Problem solving. Guided work	2 h			
Optical implementations of quantum gates. The quantum	Problem solving. Guided work	2 h			
eraser					
Bibliography:					
1. C. Gerry, P. Knight, Introductory Quantum Optics, Cambridge University Press, 2005.					
2. M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge University Press, 2002.					
3. D. F. Walls, G. J. Milburn, Quantum Optics, Springer Verlag, 1994.					

8.3. Practicals	Teaching and learning techniques	Observations	
Generation of photon pair entanglement	Guided practical activity	4 h	
Single photon Michelson interferometer	Guided practical activity	4 h	
Quantum key distribution used in quantum cryptography	Guided practical activity	4 h	
Houng-Ou-Mandel experiment	Guided practical activity	4 h	
Numerical simulations for the study of the Glauber-	Guided practical activity	2 h	
Sudarshan representation, Husimi function and Wigner			
function for different states			
Numerical simulations for the study of inseparability in	Guided practical activity	2 h	
quantum mechanics for some specific states			
Bibliography:			
1. C. Gerry, P. Knight, Introductory Quantum Optics, Cam	bridge University Press, 2005.		
2. M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridg	ge University Press, 2002.		
3. D. F. Walls, G. J. Milburn, Quantum Optics, Springer Ve	erlag, 1994.		
4. quED - Entanglement Demonstrator - A Science Kit for Quantum Physics, www.qutools.com.			
8.4. Project	Teaching and learning techniques	Observations	
Bibliography:			

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences and abilities which are important for an undergraduate student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, secondary school teaching).

10. Assessment			
Activity type	10.1 Accessment criteria	10.2. Assessment	10.3. Weight in
Activity type	10.1. Assessment citteria	methods	final mark
10.4. Lecture	- Understanding the basic concepts of	Written examination	60 %
	Quantum optics		
	- Correct use of equations and		
	physical models		
10.5.1. Tutorial	- Ability of solving problems of	Homeworks	10 %
	Quantum optics		
10.5.2. Practical	- Ability to give the interpretation for	Evaluation through	30 %
	the experimental results	practical activity	

10.5.3. Project			
10.6. Minimal requirements for	or passing the exam		
_			
For getting the mark 5:			
Attending minimum 50 % of t	the lectures, 75 % of the tutorials and 10	0% for the lab activities.	
Minimum 50 % of the require	ments for the final mark.		
Date 5.11.2021	Teacher's name and signature Associate prof. dr. Iulia Ghiu	Practicals/Tutorials instructor(name(s) and signature(s) Associate prof. dr. Iulia Ghiu	s)

Date of approval 11.11.2021

Head of Department Lect. dr. Roxana Zus

DO.308.F.1.EN Detectors Dosimetry and Radiation Protection

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of MatterStructure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Detectors Dosimetry and Radiation Protection								
2.2. Teacher				Prof. dr. Ionel La	azanu,	Conf. dr. Oana Ris	stea	
2.3. Tutorials/Practicals instructor(s)			Asist. Drd. Mihaela Parvu					
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content ¹⁾	DS
	3		2	evaluation	Е	Classification of course unit	Type ²⁾	DO

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	0	Practicals	2	Project	0
3.2. Total hours per semester	40	distribution:	Lectures	20	Tutorials	0	Practicals	20	Project	0
3.3 Distribution of estimat	ed tim	ne for study						I		hour
		Ū.								s
3.3.1. Learning by using o	ne's o	wn course notes	, manuals, l	lecture	notes, bibliog	graph	ıy			40
3.3.2. Research in library,	study	of electronic res	sources, fiel	d resea	arch		•			25
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks							16			
3.3.4. Examination								4		
3.3.5. Other activities							0			
3.4. Total hours of individual study 81										
3.5. Total hours per semester 125										

3.6. ECTS

4. Prerequisites (if necessary)

4.1. curriculum	Pre-requirements: The equations of mathematical physics, Physics of the atom and molecule,
	Nuclear and particle physics, Electronics
4.2. competencies	Knowledge of Mathematics, Atomic and Nuclear Physics, Quantum mechanics, Programming
	languages and numerical methods etc.

5

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Amphytheatre equipped with multimedia devices (video)
5.2. for practicals/tutorials/projects	Radioactive isotopic sources, experimental set up for nuclear spectroscopy,
	radiation detectors (gas, scintillators, semiconductors), multichannel analyzers,
	radiation monitors

6. Specific competences acquired

Professional	C1: The identification and appropriate use of main physical laws and principles in a given context.
competencies	C1.1: The deduction of working formulae for calculations of physical quantities using appropriate
	principles and laws of physics.
	C1.2: The description of physical systems, using theories and specific tools (theoretical and
	experimental models, algorithms, schemes, etc.)
	C1.3: Applying the principles and laws of physics in solving theoretical or practical problems with
	qualified assistance.
	C1.4: The correct application of methods of analysis and criteria for the selection of appropriate solutions to achieve specified performance
	C3: Troubleshooting the physical conditions required using numerical and statistical methods
	C3.1: Using adequate data analysis and processing of numerical methods specific physics and
	mathematical statistics
	C3.3: Linking methods of statistical analysis problems to date (to obtain measurements /
	calculations, data processing, interpretation).
	C 3.4: Evaluating the reliability of results and comparing them to bibliographic data or theoretical calculated values using statistical methods for validation and / or numerical methods
	C4: Applying knowledge in physics both in concrete situations from related fields, and in some
	experiments using standard faboratory equipment.
	Co: Addressing interdisciplinary themes from physics
	C6.1: Making connections necessary to use physical phenomena using basic knowledge of related
	C6.4: Making connections between knowledge of physics and other fields (Chemistry Biology
	Computer Science, etc.)
Transversal	
competencies	CT2: Applying the techniques of effective multidisciplinary team working on various hierarchical
	levels.
	CT3: Effective use of information sources and communication resources and training assistance, both
	in Romanian and in a foreign language.

7. Course objectives

7.1. General objective	Presentation of fundamental concepts related to radiation interactions with			
	matter, including living matter, radiation sources, mechanisms of interaction			
	used for their detection, classes of detectors, properties, the principles of			
	dosimetry, specific calculations			
7.2. Specific objectives	Understanding of the specific aspects of physical phenomena, at the atomic and			
	nuclear level; the ability to operate with these concepts and phenomena.			
	Development of experimental skills specific to this domain. Understanding of			
	the main classes of applications in everyday life.			

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
1. Fundamental processes of the interaction of radiation	Systematic exposition - lecture.	5 hours
with substance: (a) energy losses by ionization and	Examples	
excitation of the heavy charged particles, ions and		
electrons; (b) interactions of photons; (c) neutrons; (d)		
muons		
2. Radiation Sources: Isotopic sources, particle	Systematic exposition - lecture.	2 hours
accelerators, nuclear reactors, cosmic rays	Examples	
3. General properties of detectors. The main physical	Systematic exposition - lecture.	8 hours
phenomena used to detect particles. Different types of	Examples	
detectors. Operating Principles		

4. Dosimetry. Basic quantities and units. Dosimetric calculation depending on the type of radiation source (external / internal) and on the spatial dimension of the source.	Systematic exposition - lecture. Examples	2 hours
5. Dosimetric measurement. Dosimetry methods. Radioprotection. Dosimetry and radiation protection standards.	Systematic exposition - lecture. Examples	2 hours
6. Elements of medical dosimetry. Dosimetry at particle accelerators and at high power lasers		1 hour
 Bibliography: 1. F. Attix, Introduction to radiological physics and radiati 2. Brian R Martin, Nuclear and Particle Physics – An Intro 3. WR Leo, Techniques for nuclear and particle physics es 4. Manuale scrise de membrii Catedrei de Fizica atomica 5. Fizica nucleara – Culegere de probleme (Catedra de fiz 6. G.F. Knoll, Radiation Detection and Measurement, Wil 7. C. Grupen, B. A. Swartz, Particle Detectors, Cambridge 8.2. Tutorials 	ion dosimetry, John Whiley &Sons, 1 oduction, 2nd_Edition, 2009 xperiments, 2nd Edition Springer-Ver si nucleara, autori diferiti, diferite edi ica atomica si nucleara), Editura All, ey, 2000 e University Press 2008 Teaching and learning techniques	986 lag , 1994 itii 1994 Observations
Bibliography:		
8.3. Practicals	Teaching and learning techniques	Observations
1. Energy calibration of detection systems. Spectrum processing and extraction of relevant information	Guided practical activities	2 hours
2. Study of the sensitivity of scintillation detectors		2 hours
3. Determination of the dead time for scintillation detectors		2 hours
4. Information processing at visualization detectors		2 hours
5. Study of the detection efficacity of different types of detectors		2 hours
6. MC simulations (TRIM, GEANT4) of heavy ion interactions in matter and biological tissue		4 hours
Dosimetric calculation and radiation protection problems	Guided work	4 hours
Examination		2 hours
 Bibliography: 1. Fizica nucleara – Culegere de probleme (Catedra de fiz 2. Lucrari practice de Fizica nucleara, Îndrumător de labo Univ. Bucureşti, 1987 3. Bazele Fizicii nucleare, Lucrari practice, Indrumător de (editor Mihaela Sin), Ed. Univ. Bucureşti, 2003 4. 1000 solved problems in Modern Physics, A. Kamal, Sp 5. Problems and solutions on Atomic, Nuclear and Particle 6. https://geant4.web.cern.ch/ 7. http://www.srim.org/ 	ica atomica si nucleara), Editura All, rator, Colectivul Catedrei de Fizică a e laborator, Colectivul Catedrei de Fiz pringer-Verlag, 2010 e Physics, YK. Lim, World Scientifi	1994 tomică și nucleară, Ed. zică atomică și nucleară c, 2000
8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and/or practical competences and abilities which are important and fundamental for an undergraduate student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or from the EU (University of Oxford https://www.ox.ac.uk/admissions/undergraduate/courses-listing?wssl=1, University of Parma

<u>http://www.difest.unipr.it/it/didattica/laurea-triennale-fisica/calendario-didattico</u>, Universitatea Padova, <u>http://en.didattica.unipd.it/didattica/2015/SC1158/2014</u>).

The contents are in line with the requirements of the main employers of the graduates (industry, research, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyse specific examples 	Oral examination	60%
10.5.1. Tutorial			
10.5.2. Practical	 ability to use specific experimental methods/apparatus ability to perform/design specific experiments ability to present, analyze and discuss the results ability to use specific problem solving methods 	Lab reports	40%
10.5.3. Project			
10 C Minimal no quinamento f	an accessing the second		

10.6. Minimal requirements for passing the exam

Correct understanding of the concepts and phenomena, the ability to work with them and obtain accurate numerical results on topics imposed.

Requirements for mark 5 (10 points scale)

All practical works finished and 5 score at the examination of the laboratory activity.

The correct exposure of the subjects indicated to derive the score 5 at the final exam.

Date 03.11.2021	Teacher's name and signature Prof. dr. Ionel Lazanu Conf. dr. Oana Ristea	Practicals/Tutorials instructor(s) Asist. Drd. Mihaela Parvu
Date of approval	Hea	ad of Department
11.11.2021	Prof.	Dr. Alexandru Jipa

DO.308.F.2.EN Radiation sources. Natural and induced radioactivity

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of MatterStructure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)

17	Study	mode
T •/•	oruay	moue

Full-time study

2. Course unit

2. Course unit									
2.1. Course unit title		Radiation so	Radiation sources. Natural and induced radioactivity						
2.2. Teacher Prof. dr Ionel Lazanu, Conf. dr. Oana Ristea									
2.3. Tutorials/Practicals instructor(s) Asist. Drd. Mihaela Parvu									
2.4. Year of study	ar of study 2.5. Semester					2.7.	Content 1)	DS	
3 2		evaluation	Е	Classification	Type ²⁾	DO			
						of course unit	Type	DU	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

	/								
4	distribution:	Lectures	2	Tutorials	0	Practicals	2	Project	0
40	distribution:	Lectures	20	Tutorials	0	Practicals	20	Project	0
								0	
3.3 Distribution of estimated time for study								hour	
								S	
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography								40	
3.3.2. Research in library, study of electronic resources, field research								25	
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks								16	
3.3.4. Examination								4	
3.3.5. Other activities								0	
3.4. Total hours of individual study 81									
3.5. Total hours per semester 125									
3.6. ECTS 5									
	4 40 ed tim ne's o study ticals/tical	4 distribution: 40 distribution: ed time for study ne's own course notes study of electronic resticals/tutorials/project tical study ter	4 distribution: Lectures 40 distribution: Lectures ed time for study	4 distribution: Lectures 2 40 distribution: Lectures 20 ed time for study ne's own course notes, manuals, lecture study of electronic resources, field reseaticals/tutorials/projects/reports/homewo	4 distribution: Lectures 2 Tutorials 40 distribution: Lectures 20 Tutorials ed time for study 20 Tutorials 20 Tutorials ne's own course notes, manuals, lecture notes, bibliog study of electronic resources, field research 30 31 ticals/tutorials/projects/reports/homeworks 31 31 31 tal study 81 32 32 ter 125 5 5	4 distribution: Lectures 2 Tutorials 0 40 distribution: Lectures 20 Tutorials 0 ed time for study 20 Tutorials 0 0 ed time for study earch 125 5	4 distribution: Lectures 2 Tutorials 0 Practicals 40 distribution: Lectures 20 Tutorials 0 Practicals ed time for study ane's own course notes, manuals, lecture notes, bibliography study of electronic resources, field research study of electronic resources, field research ticals/tutorials/projects/reports/homeworks 81 study 125 5 5 5 5	4 distribution: Lectures 2 Tutorials 0 Practicals 2 40 distribution: Lectures 20 Tutorials 0 Practicals 20 ed time for study ane's own course notes, manuals, lecture notes, bibliography study of electronic resources, field research study of electronic resources, field research study study	4 distribution: Lectures 2 Tutorials 0 Practicals 2 Project 40 distribution: Lectures 20 Tutorials 0 Practicals 20 Project ed time for study

4. Prerequisites (if necessary)

4.1. curriculum	Pre-requirements: The equations of mathematical physics, Physics of the atom and molecule,
	Nuclear and particle physics, Electronics
4.2. competencies	Knowledge of Mathematics, Atomic and Nuclear Physics, Quantum mechanics, Programming
	languages and numerical methods etc.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Amphytheatre equipped with multimedia devices (video)
5.2. for practicals/tutorials/projects	Radioactive isotopic sources, experimental set up for nuclear spectroscopy, radiation detectors (gas scintillators, semiconductors), multichannel analyzers
	radiation monitors

6. Specific competences acquired

Professional	C1: The identification and appropriate use of main physical laws and principles in a given context.
competencies	C1.1: The deduction of working formulae for calculations of physical quantities using appropriate
	principles and laws of physics.
	C1.2: The description of physical systems, using theories and specific tools (theoretical and
	experimental models, algorithms, schemes, etc.)
	C1.3: Applying the principles and laws of physics in solving theoretical or practical problems with
	qualified assistance.
	C1.4: The correct application of methods of analysis and criteria for the selection of appropriate
	solutions to achieve specified performance.
	C3: Troubleshooting the physical conditions required using numerical and statistical methods
	C3.1: Using adequate data analysis and processing of numerical methods specific physics and
	mathematical statistics
	C3.3: Linking methods of statistical analysis problems to date (to obtain measurements /
	calculations, data processing, interpretation).
	C 3.4: Evaluating the reliability of results and comparing them to bibliographic data or theoretical
	calculated values using statistical methods for validation and / or numerical methods
	C4: Applying knowledge in physics both in concrete situations from related fields, and in some
	experiments using standard laboratory equipment.
L	

	C6: Addressing interdisciplinary themes from physics					
	C6.1: Making connections necessary to use physical phenomena using basic knowledge of related					
	fields (chemistry, biology, etc.)					
	C6.4: Making connections between knowledge of physics and other fields (Chemistry, Biology,					
	Computer Science, etc.).					
Transversal						
competencies	CT2: Applying the techniques of effective multidisciplinary team working on various hierarchical					
-	levels.					
	CT3: Effective use of information sources and communication resources and training assistance, both					
	in Romanian and in a foreign language.					

7. Course objectives

7.1. General objective	Presentation of fundamental concepts related to radiation interactions with
	matter, including living matter, radiation sources, mechanisms of interaction
	used for their detection, classes of detectors, properties, the principles of
	dosimetry, specific calculations
7.2. Specific objectives	Understanding of the specific aspects of physical phenomena, at the atomic and
	nuclear level; the ability to operate with these concepts and phenomena.
	Development of experimental skills specific to this domain. Understanding of
	the main classes of applications in everyday life.

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
1. Fundamental processes of interaction of the radiation	Systematic exposition - lecture.	5 hours
with matter. Effects of radiation on the population and	Examples	
environment.		
2. Radiation sources. Cosmic radiation. Primary and	Systematic exposition - lecture.	5 hours
secondary sources. Cosmogenic radionuclides.	Examples	
Radioactive series. Their distributions in nature.		
Analysis of the Ra-226 and K-40 . Air radioactivity		
(Rn-222, R-220 and their descendants). Distribution of		
radon in the atmosphere and housing.		
3. Artificial radioactivity. Particle accelerators, nuclear	Systematic exposition - lecture.	4 hours
reactors, neutron sources (spallation), medical and	Examples	
industrial sources, high power lasers, nuclear weapons.		
4. The nuclear reactor as a source of radioactivity.	Systematic exposition - lecture.	2 hours
	Examples	
5. Elements of the dosimetry. Basic quantities and units.	Systematic exposition - lecture.	4 hours
Dosimetric measurement. Dosimetry methods. The	Examples	
principles of radiation protection. Dosimetry and		
radiation protection standards.		

Bibliography:

1. F. Attix, Introduction to radiological physics and radiation dosimetry, John Whiley & Sons, 1986

2. Brian R Martin, Nuclear and Particle Physics – An Introduction, 2nd_Edition, 2009

3. WR Leo, Techniques for nuclear and particle physics experiments, 2nd Edition Springer-Verlag, 1994

4. M. L. Anunziata, Handbook of radioactivity analysis, Academic Press 2012

5. O. Sima, Note de curs Radioactivitatea mediului

6. G.F. Knoll, Radiation Detection and Measurement, Wiley, 2000

8.2. Tutorials	Teaching and learning techniques	Observations
Bibliography:		
8.3. Practicals	Teaching and learning techniques	Observations

		1	
1. Gamma spectrometry using scintillation and	Guided practical activities	2 hours	
semiconductor detectors			
2. Calibration of germanium spectrometer for			
environmental samples measurements (matrix effects		2 hours	
and coincidence effects are considered)			
2. Alpha and hota apactromatry on thick complete		2 hours	
5. Alpha and beta spectrometry on thick samples		2 Hours	
4 Radon flux measurements of ambient concentration		4 hours	
and dose calculations		4 nours	
5. Thermoluminescence dosimetry		2 hours	
6.Calibration of a dosimetry system		2 hours	
Numerical applications in dosimetry and radioprotection	Guided work	4 hours	
Examination		2 hours	
Bibliography:			
1. Fizica nucleara – Culegere de probleme (Catedra de fizica atomica si nucleara), Editura All, 1994			

 Lucrari practice de Fizica nucleara, Îndrumător de laborator, Colectivul Catedrei de Fizică atomică și nucleară, Ed. Univ. București, 1987

3. Bazele Fizicii nucleare, Lucrari practice, Indrumător de laborator, Colectivul Catedrei de Fizică atomică și nucleară, Ed. Univ. București, 2003

4. 1000 solved problems in Modern Physics, A. Kamal, Springer-Verlag, 2010

5. Problems and solutions on Atomic, Nuclear and Particle Physics, Y.-K. Lim, World Scientific, 2000

8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and/or practical competences and abilities which are important and fundamental for an undergraduate student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or from the EU (University of Oxford https://www.ox.ac.uk/admissions/undergraduate/courses-listing?wssl=1, University of Parma http://www.difest.unipr.it/it/didattica/laurea-triennale-fisica/calendario-didattico, Universitatea Padova,

<u>http://en.didattica.unipd.it/didattica/2015/SC1158/2014</u>). The contents are in line with the requirements of the main employers of the graduates (industry, research, secondary

school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyse specific examples 	Oral examination	60%
10.5.1. Tutorial			
10.5.2. Practical	 ability to use specific experimental methods/apparatus ability to perform/design specific experiments 	Lab reports	40%

	- ability to present, analyze and			
	discuss the results			
	- ability to use specific problem			
	solving methods			
10.5.3. Project				
10.6. Minimal requirements for passing the exam				
Correct understanding of the concepts and phenomena, the ability to work with them and obtain accurate numerical				
results on topics imposed.				
Requirements for mark 5 (10 points scale)				
All practical works finished and 5 score at the examination of the laboratory activity.				
The correct exposure of the subjects indicated to derive the score 5 at the final exam.				

Date 27.10.2021

Teacher's name and signature Prof. dr. Ionel Lazanu Conf. dr. Oana Ristea

Practicals/Tutorials instructor(s) Asist. Drd. Mihaela Parvu

Date of approval 11.11.2021

Head of Department Prof. Dr. Alexandru Jipa

DO.309F.1.EN Introduction to Polymers Physics

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit tit	le	D Introduction to Polymer Physics							
2.2. Teacher Conf.Dr.Anca Dumitru									
2.3. Tutorials/Practicals instructor(s) Conf.Dr.Anca Dumitru				_					
2.4. Year of	2	2.5.	G	2.6	6. Type of	Б	2.7. Type of	Content ¹⁾	DS
study	3	Semester	0	eva	aluation	E	course unit		
								Type ²⁾	DO

¹⁾ fundamental (DF), speciality (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	Practicals	2	Proje ct	
3.2. Total hours	40	distribution:	Lectures	20	Tutorials	Practicals	20	Proje	
per semester	l							CL	1
3.3 Distribution of e	estimate	a time for study							hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 35					35				
3.3.2. Research in library, study of electronic resources, field research					22				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks					24				
3.3.4. Examination 4					4				
3.3.5. Other activities X					Х				
3.4. Total hours of 81									
individual study									
3.5. Total hours per 125									

semester	
3.6. ECTS	5

4. Prerequisites (if necessary)

(in necessary)				
4.1. curriculum	The equations of mathematical physics, thermodinamics and molecular physics, chemistry, Electricity			
4.2. competences	Knowledge of General Physics, Chemistry and Mathematics			

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Amphitheater equipped with multimedia devices	
5.2. for practicals/tutorials	Set of practical work illustrating the topics covered in the course; Consumables;	
	Computers and software for data analysis	

6. Specific competences acquired

Professional	C1: Identification and appropriate use of main physical laws and principles in a given context.
competences	C1.1: Deduction of working formulas for calculations of physical quantities using appropriate
	principles and laws of physics.
	C1.2: description of physical systems, using theories and specific tools (theoretical and
	experimental models, algorithms, schemes, etc.)
	C1.3: Applying the principles and laws of physics in problem solving theoretical or practical, in
	terms of qualified assistance.
	C1.4: Correct application of methods of analysis and criteria for the selection of appropriate
	solutions to achieve specified performance
	C4. Applying knowledge of physics in both, concrete situations from related fields and in some
	experiments using standard laboratory equipment.
	C6: Addressing interdisciplinary themes from physics area
	C6.1: Making connections necessary to use physical phenomena using basic knowledge of related
	fields (chemistry, biology, etc.)
	C6.4: Making connections between knowledge of physics and other fields (Chemistry, Biology,
	Computer Science, etc.).
Transversal	CT2: Applying the techniques of effective multidisciplinary team working on various hierarchical
competences	levels.
	CT3: Effective use of information sources and communication resources and training assistance, both
	in Romanian and in a foreign language.

7. Course objectives

· · · · · · · · · · · · · · · · · · ·	
7.1. General objective	This course gives an overview of the fundamental aspects of polymers from the
	synthesis of polymers to characterization, properties, and applications of
	polymers for undergraduate students.
7.2. Specific objectives	Develop fundamental understanding of polymers, polymeric reactions and
	properties; recognize the potential value of polymeric materials and their areas of
	application; ability to interpret and analyze experimental data; become familiar
	with current topics in polymer science; ability to use analysis techniques to
	identify the properties of polymer materials of interest in modern applications;
	work in a team for solving experimental and technological issues; identify and
	use bibliographic resources for continuous formation; Understanding main

classes of applications in everyda	y life.
------------------------------------	---------

8. Contents				
8.1. Lecture [chapters]	Teaching techniques	Observations		
History, Definition and Concept of Polymers. Introduction to the history	Systematic exposition -			
of polymer science. Definition of the concept of polymer, by describing the	lecture. Conversation.	2 hours		
types of polymers based on chemical structure and origins.	Examples			
Classification of polymers. Classification of polymers based on: origin,				
chemical composition of monomer, chemical composition of polymers,	Systematic exposition -			
nature of polymer chain, degree of polymerization, type of polymerization	lecture. Conversation.	2 hours		
reactions, polymer configuration, thermo- mechanical behavior,	Examples			
microscopic arrangement of molecules and applications				
Molecular weight of polymers. Description of the concepts of average	Systematic exposition -			
molecular weights of polymer and of molecular weight distribution and	lecture. Conversation.	2 hours		
principles and methods for measuring them.	Examples			
Polymerization, Reactions and Polymerization Processes. Description of				
polymerization reactions: addition polymerization and step growth	Systematic exposition -			
polymerization; Description of polymerization processes: bulk	lecture. Conversation.	4 hours		
polymerization, suspention polymerization, emulsion polymerization and	Examples			
special processes.	_			
Electrical properties of polymers. Dielectrics properties of polymers.	Systematic expectition			
Relaxation and dielectric losses in polymers. Applications of dielectric	tion and dielectric losses in polymers. Applications of dielectric			
polymers. Semiconducting properties of polymers. Description of synthesis	Examples	4 110015		
methods and applications of semiconducting polymers.				
Methods of characterization. Brief presentation of characterization				
methods particulary used for polymers materials including Infrared and	Systematic exposition -	6 hours		
Raman Spectroscopy, X-ray photoelectron Sepctroscopy, X-ray Diffraction	Examples			
and Thermal Analysis.	nd Thermal Analysis.			
Bibliography:				
 Nicholson J.W., The Chemistry of Polymer, RSC Publishing, Cambra 	ridge, UK, 2012.			
 L. H. Sperling, Introduction to Physical Polymer Science, 4th ed. John Wiley and Sons (2005) 				
David I. Bower, An introduction to Polymer Physics, Cambridge University Press (June 5, 2012), ISBN:				
9780521637213;				
 Handbook of conducting polymers, vol. I. New York: Marcel Dekke 	r; 1986. p. 265–91.			
 L.Constantinescu, C.Berlic, "Metode experimentale in fizica polimerilor" Ed. Univ. Din Bucuresti, 1999 				
 L.Constantinescu, C.Berlic, "Structura polimerilor. Metode de studiu" Ed. Univ. Din Bucuresti, 2003 				
 R J Young and P A Lovell, Introduction to Polymers, Chapman & Hall, 1992. 				
 R Moore, D E Kline, Properties and Processing of Polymers for Engineers, Prentice-Hall, 1984 				
 D H Morton-Jones, Polymer Processing, Chapman & Hall, 1989. 				
 C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulter, G.E. Muilenber 	 C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulter, G.E. Muilenberg, Handbook of X-ray Photoelectron 			
Spectroscopy, Perkin-Elmer Corporation (1978).				
http://www.pslc.ws/mactest/maindir.htm				
"X-ray Diffraction Procedures for Polycrystalline and Amorphous M	laterials", Harold P. Klug an	d L. R.		
Alexander, Wiley-Interscience, 1974	1			
8.2. Tutorials [main themes]	Teaching and learning	Observations		
	techniques	Observations		
Dibliography				
bioliography:				
	Tooching and looming			
8.3. Practicals [practical activities, projects, etc.]	toobniquos	Observations		
	techniques			

 Oxidative polymerization of aniline Oxidative polymerization of pyrrole Electrochemical synthesis of polyaniline/polypyrrole Analysis and interpretation of FTIR spectra of polyaniline/polypyrrole Analysis and interpretation of RAMAN spectra of polyaniline/polypyrrole Determination of the degree of crystallinity of a polymer using X-ray diffraction (XRD). Analysis and interpretation of the data. Analysis of XPS spectra of polymer materials. 	Guided practical activity	18 hours
Laboratory examination		2h
 Bibliography: 1.Handbook of conducting polymers, vol. I. New York: Marcel Dekker; 1986 2.L.Constantinescu, C.Berlic, "Metode experimentale in fizica polimerilor" E 3.C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulter, G.E. Muilenberg, Hand Perkin-Elmer Corporation (1978). 4. "X-ray Diffraction Procedures for Polycrystalline and Amorphous Material Wiley-Interscience, 1974 5.Fred A. Stevie, and Carrie L. Donley, Introduction to x-ray photoelectron sp Nov/Dec 2020 6.Elvira De Giglio, Nicoletta Ditaranto, and Luigia Sabbatini , Cpap.3 -Polyn XPS, in the book Polymer Surface Characterization, Ed. Berlin/Boston De G 	. p. 265–91. d. Univ. Din Bucuresti, 1999 lbook of X-ray Photoelectro ls", Harold P. Klug and L. R. pectroscopy, J. Vac. Sci. Tech ner surface chemistry: Chara ruyter, 2014 (e-book)	9 n Spectroscopy, Alexander, 1nol. A 38(6) acterization by
8.4. Project [only if included in syllabus]	Teaching and learning techniques	Observations
Bibliography: whatever you decide to indicate		
· ·		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit forms/develops some theoretical and/or practical competences and abilities which are important/fundamental/something else for an undergraduate student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania and around the world (University of Pittsburgh, Massachusetts Institute of Technology; Virginia Tech University, Upsala University). The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight
10.4. Lecture	 coherence and clarity of exposition correct use of knowledge and theminology used in polymer physics ability to indicate/analyse specific examples 	Presentation/Oral examination	70%
10.5.1. Tutorials			
10.5.2. Practicals	 ability to use specific experimental methods/apparatus ability to analyse and interpret the characterization data ability to present and discuss the results 	Examination of Lab reports	30%
10.5.3. Project [only if			
included in syllabus]			
10.6. Minimal requirements for	or passing the exam		
Fulfilments of at least 50% of	each of the criteria that determine the fin	al grade.	
Requirements for mark 5 (10 points scale)			

Completion of 80% of laboratory and mark 5 to the colloquium Good understanding and exposure of a selected subject

Date 18.10.2021

Date of approval 11.11.2021

Teacher's name and signature Conf. dr. Anca Dumitru

Practicals/Tutorials instructor(s) name(s) and signature(s) Conf. dr. Anca Dumitru Head of Department Prof. dr. Alexandru Jipa

DO.309F.2.EN Introduction to environmental physics

1. Study program

University of Bucharest
Faculty of Physics
Department of Matter Structure, Atmospheric and Earth Physics, Astrophysics
Physics
Undergraduate/Bachelor of Science
Physics (in English)
Full-time study

2. Course unit

2.1. Course unit tit	le	Introduction to environmental physics							
2.2. Teacher Prof. dr. Mihai Dima									
2.3. Tutorials/Practicals instructor(s) Prof. dr. Mihai Dima									
2.4. Year of		2.5.		2.6	. Type of		2.7. Type of	Content ¹⁾	DF
study	3	Semester	2	eva	lluation	Е	course unit	Type ²⁾	DS

¹⁾ fundamental (DF), speciality (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per					_	_			
week in	4	distribution:	Lectures	2	Tutorials	Practicals	2	Project	
curriculum									
3.2. Total									
hours per	40	distribution:	Lectures	20	Tutorials	Practicals	20	Project	
semester									
3.3 Distribution	of estir	nated time for s	tudy						hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						35			
3.3.2. Research in library, study of electronic resources, field research2.						22			
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks						24			
3.3.4. Examination						4			
3.3.5. Other activ	vities								0
3.4. Total hours	of	81							
individual study									
3.5. Total hours	per	125							
semester									
3.6. ECTS		5							

4. Prerequisites (if necessary)

4.1. curriculum	some (preceding) courses
4.2. competences	some previously formed competences / Not applicable

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Amphitheater equipped with multimedia devices
5.2. for practicals/tutorials	Set of practical work illustrating the topics covered in the course; Consumables;

Computers and software for data analysis

6. Specific competences acquired

Professional	C1 – Understanding of the current most important global environmental problems
competences	C2 – Solving imposed condition environmental physics problems
	C3 - Apply knowledge of environmental physics in experiments using standard laboratory equipment
	C4 – Communication and analysis of didactic, scientific and dissemination of information
Transversal	CT1- Achievement of the professional duties in an efficient and responsible way with compliance
competences	with deontological legislation specific to the domain under qualified assistance.
	CT3 - Effective use of information, communication and training assistance in English.

7. Course objectives

7.1. General objective	The assimilation of general framework of macroscopic and
	microscopic studies of thermal phenomena
7.2. Specific objectives	Knowledge and understanding
	- Understanding the main current global environmental problems
	- Assimilation of the main components of the general circulation of atmosphere and ocean
	- Assimilation of the main critical components of the climate system
	- The knowledge of description of thermodynamic system by state equations and the
	connections with response functions.
	- Understanding the multiple dimensions of climate change and its physical and socio-
	economic implications
	Explanation and interpretation
	Connection between the theoretical concepts defined in lecture and experimental
	investigation in practical work in the laboratory. The practical application of the general
	principles in solving the concrete problems.

8.1. Lecture [chapters]	Teaching techniques	Observations
Actual environmental problems: global warming and climate change, distruction of the Ozone layer, pollution. The global warming: manifestation, causes and severity. Perception of climate change.	Systematic exposition - lecture. Conversation. Examples	2 hours
Extened temporal perspective on the actual climate change – Paleoclimatology.	Systematic exposition - lecture. Conversation. Examples	4 hours
Climate models. Design and scientific utility. Weather prediction, climate prediction and climate projections.	Systematic exposition - lecture. Conversation. Examples. Problems.	4 hours
General circulation of atmosphere and ocean.	Systematic exposition - lecture. Conversation. Examples. Problems.	4 hours
Critical components of the climate system.	Systematic exposition - lecture. Conversation. Examples	2 hours
Thermohaline circulation. Socio-economic implications of climate change.	Systematic exposition - lecture. Conversation. Examples	2 hours
Review of the concepts and notions presented during the course.	Systematic exposition - lecture. Conversation. Examples	2 hours

renote 5 and Cort re.,5., 1550. Thysics of Chin	ute, Du riew ronk, pp. 000.	
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations

Bibliography: whatever you decide to indicate		
8.3. Practicals [practical activities, projects, etc.]	Teaching and learning techniques	Observations
 Common structures of climate data files Basic concepts of the GRADS application, used to plot global climate data Types of plots in GRADS Computing with GRADS Analyzing data with GRADS Visualizing global warming in GRADS Constructing climate indices with GRADS Statistical methods used in climate science. Correlation and regression 	Guided practical activity	20 hours
Laboratory examination	Reports of practical works and oral examination	4h
 Bibliography: Climate Explorer (<u>http://climexp.knmi.nl/start.cg</u> GRADS (<u>http://cola.gmu.edu/grads/</u>) Wilks, D. S., Statistical Methods in the Atmosphere IPCC report 2021 (<u>https://www.ipcc.ch/report/arefere</u>) 	i) eric Sciences, Academic Press (2 <u>5/wg1/</u>).	2006).
8.4. Project [only if included in syllabus]	Teaching and learning techniques	Observations
Bibliography: whatever vou decide to indicate		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit forms competences and abilities which are important for an undergraduate student in the field of modern Physics, corresponding to national and international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 - coherence and clarity of exposition - correct use of knowledge and theminology used in thermal physics 	1. Partial examination. Written test examination of theoretical competences.	30%
	 ability to indicate/analyse specific examples correct use of equations/mathematical methods/physical models and theories 	2. Final examination. Written and oral test examinations of theoretical competences	40%
10.5.1. Tutorials			
10.5.2. Practicals	 ability to use specific experimental methods/apparatus ability to analyse and interpret the characterization data ability to present and discuss the results 	Examination of Lab reports	30%
10.5.3. Project [only if			
included in syllabus]			
10.6. Minimal requirements for	or passing the exam		

Fulfillment of at least 50% of each of the criteria that determine the final grade.

Requirements for mark 5 (10 points scale)

Completion of 80% laboratory and mark 5 to the colloquium

Minimal knowledge of the theoretical concepts and of the practical works such as: Thermodynamic system. Properties of state and process variable. General expression of first and second law of thermodynamics and their applications for isoprocesses. Thermal and caloric coefficient. Heat engines efficiency.

Date 21.10.2021	Teacher's name and signature Prof dr. Mihai Dima	Practicals/Tutorials instructor(s) name(s) and signature(s) Prof. dr. Mihai Dima
--------------------	---	--

Date of approval 11.11.2021

Head of Department Prof. dr. Alexandru Jipa

DO.310F.1.EN Semiconductor physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Semiconduct	or physic	CS				
2.2. Teacher				Prof.dr. Lucian I	on			
2.3. Tutorials/Practicals	s instru	uctor(s)		Conf.dr. George-	Alexa	ndru Nemneş, Pro	f.dr. Lucian Ion	
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DS
	3		6	evaluation	E	Classification	Trme ²	DO
						of course unit	Type >	DO

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	5	distribution:	Lectures	2	Tutorials	1	Practicals	2
3.2. Total hours per semester	50	distribution:	Lectures	20	Tutorials	10	Practicals	10
3.3 Distribution of estimated t	ime for s	tudy	•				•	hours
3.3.1. Learning by using one's	own cou	irse notes, manual	s, lecture no	tes, bib	liography			25
3.3.2. Research in library, study of electronic resources, field research			25					
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks 2			21					
3.3.4. Examination 4			4					
3.3.5. Other activities				-				
3.4. Total hours of individual study 71								
3.5. Total hours per semester 125								
3.6. ECTS 5								

4. Prerequisites (if necessary)

4.1. curriculum	Courses: Electricity and magnetism, Quantum Mechanics I, Equations of mathematical physics,
	Electrodynamics and Relativity theory, Thermodynamics and Statistical mechanics, Solid state
	physics, Equations of Mathematical Physics
4.2. competencies	Abilities of Computational Physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (videoprojector, PC)

5.2. for practicals/tutorials/projects	Seminar room/specific laboratory infrastructure
--	---

6.	Specific	competence	es acquired
----	----------	------------	-------------

Professional	Proper identification and use of basic laws, notions and principles specific for condensed matter
competencies	physics
	Solving physics problems under given circumstances
	Performing Physics experiments using standard lab equipment and evaluating the results based on
	theoretical models
	Applying creatively the acquired knowledge toward understanding and modeling the processes and
	physical properties of condensed matter
	Communication and analysis of scientific information in physics
	Using specific software packages for data analysis and processing
Transversal	Efficient use of information sources and communication and training resources in an international
competencies	language
	Accomplishing professional tasks in an efficient and responsible manner by abiding to legislation
	and specific ethical and deontological rules, under supervised assistance

7. Course objectives

7.1. General objective	Knowledge of phenomena and specific physical properties of Semiconductor
	physics
7.2. Specific objectives	The study of kinetic phenomena in semiconductors.
	Study of the optical properties of semiconductors.
	Presenting in each chapter the applications of the studied phenomenon and
	solving some problems that will allow the student to understand the phenomena
	and form a creative way of thinking, essential for solving practical problems.

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
Kinetic phenomena. Fundamental coefficients of	Systematic exposition - lecture.	6 hours
transport in semiconductors	Examples	6 110015
Hall effect. Magnetoresistant effect	Systematic exposition - lecture.	1 hours
	Examples	4 110015
The fundamental transport equations	Systematic exposition - lecture.	2 hours
	Examples	2 110015
Shockley-Read statistics. Recombination rate associated	Systematic exposition - lecture.	1 hours
with the deep levels.	Examples	4 110015
The optical properties of semiconductors	Systematic exposition - lecture.	1 hours
	Examples	4 110015

Bibliography:

P.S. Kireev, *Fizica semiconductorilor* (Editura Științifică și Enciclopedică, București, 1977).

K.W. Boer, U.W Pohl, Semiconductor Physics (Springer, Berlin, Germany, 2018).

• P.Y. Yu, M. Cardona, Fundamentals of Semiconductors – Physics and Materials Properties Introduction to

Modern Solid State Physics, (Springer, Berlin, Germany, 2010)

I. Munteanu, <i>Fizica solidului</i> , (Editura Universității din București, București, 2003).
L. Ion. Note de curs (pdf)

8.2. Tutorials	Teaching and learning techniques	Observations
Electronic semiconductor structure. Doped semiconductors.	Theoretical exposition. Problem solving	2 hours
Hall effect, temperature dependence. The mobility of load carriers.	Theoretical exposition. Problem solving	2 hours
Recombination rate in the presence of deep-level impurities.	Theoretical exposition. Problem solving	2 hours
The fundamental optical absorption	Theoretical exposition. Problem solving	2 hours
Hall effect. Magnetoresistant effect.	Theoretical exposition. Problem solving	2 hours

Bibliography:

- K.W. Boer, U.W Pohl, *Semiconductor Physics* (Springer, Berlin, Germany, 2018).
- P.Y. Yu, M. Cardona, Fundamentals of Semiconductors Physics and Materials Properties *Introduction to Modern Solid State Physics*, (Springer, Berlin, Germany, 2010)

•	I. Munteanu, L. Ion, N. Tomoze	iu, "Fizica semiconductorilor	[•] în probleme și exerciții"	(Ed. Universității din
Bucures	ști, București, 1994)			

D. Dragoman, Note de curs (pdf)

8.3. Practicals	Teaching and learning techniques	Observations
The Seebeck effect	Guided practical activity	2 hours
The Peltier effect		2 hours
The optical absorption spectroscopy - determination of the bandwidth of the prohibited semiconductor band	Guided practical activity	2 hours
Study of centers of impurity by electronic spin resonance	Guided practical activity	2 hours
The I-V characteristic of the p-n junction	Guided practical activity	2 hours

Bibliography:

- C. Berbecaru, L. Ion, Fizica solidului Caiet de lucrări de laborator
- C. Kittel, Introduction to Solid State Physics (8th ed., John Wiley & Sons, New York, 2004).
- K.W. Boer, U.W Pohl, Semiconductor Physics (Springer, Berlin, Germany, 2018).
- P.Y. Yu, M. Cardona, Fundamentals of Semiconductors Physics and Materials Properties *Introduction to Modern Solid State Physics*, (Springer, Berlin, Germany, 2010)

•	I. Munteanu,	L. Ion, N.	Tomozeiu,	"Fizica semico	onductorilor	[,] în probleme ş	i exerciții"	(Ed.	Universității	i din
Bucureş	ti, București, 1	.994)								

• D. Dragoman, Note de curs (pdf)

_ · _ ·		
8.4. Project Not Applicable	Teaching and learning techniques	Observations
Bibliography		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The course content is in agreement with the content of similar courses taught at national and international universities, such as University Babeş-Bolyai, Cluj Napoca, University "Alexandru Ioan Cuza", Iaşi and, respectively, University of Groningen, Netherlands, Warwick University, UK, University of Tubingen, Germany, Technical University Wien, Austria, etc. The course forms abilities and competences to analyze the physical phenomena specific to semiconductors, to plan and carry out specific experiments and to identify applications, skills and abilities of interest for companies and research institutes with activity in Materials Physics as well as in secondary school teaching.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in
		methous	
10.4. Lecture	Clarity, coherence and concision of	Written exam	60%
	exposition;		
	Proper use of physical models and		
	mathematical formalism;		
	Capacity of exemplification;		
	Capacity to apply the acquired		
	knowledge to problem solving.		
10.5.1. Tutorial	Application of specific solving	On-going evaluation;	20%
	methods for a given problem	solving of given homeworks	
10.5.2. Practical	Proper use of physical models and	Lab colloquium	20%
	mathematical formalism;	-	
	Knowledge of specific experimental		
	techniques and instrumentation		
10.5.3. Project	Not applicable	Not applicable	Not applicable
10.6. Minimal requirements for	or passing the exam		
	l e de la construcción de la constru	· · · · · · · · · · · · · · · · · · ·	

Attendance at all practical and tutorial activities and mark 5 at the corresponding evaluations

Solving of selected subjects for mark 5 at the final written exam Obtaining a grade of 5 at the laboratory colloquium. Requirements for getting mark 10 (10 points scale) Skills, well-argued knowledge Demonstrated ability to analyze phenomena and processes

Data	Toschor's signature	Practicals/Tutorials instructor's
05.11.2021	Prof.dr. Lucian Ion	signature Conf.dr. George Alexandru Nemneş

Date of approval 11.11.2021

Head of Department Conf.dr. Adrian Radu

DO 311.2F.EN Advanced in solid state

1. Study program	
1.1. University	University of Bucharest
o 1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Exact and natural sciences / Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Advanced in	Advanced in solid state physics					
2.2. Teacher				Assoc. Prof. Geo	orge Al	exandru Nemneş		
2.3. Tutorials/Practicals instructor(s)			Assoc. Prof. George Alexandru Nemneş					
2.4. Year of study		2.5. Semester		2.6. Type of		2.7. Type of	Content 1)	DF
	3		6	evaluation	Е	course unit	Type ²⁾	DO
							турс	00

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	1	Practicals	2	Project	0
3.2. Total hours per semester	50	distribution:	Lectures	20	Tutorials	10	Practicals	20	Project	0
3.3 Distribution of estimated time for study									hours	
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography								20		
3.3.2. Research in library, study of electronic resources, field research									20	
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks									31	
3.3.4. Examination								4		
3.3.5. Other activities								0		
3.4. Total hours of individual study 71										
3.5. Total hours per semester 125										

A Proroquisitos (if pocossary)

3.6. ECTS

4. Freiequisites (II nece	55diy)
4.1. curriculum	Lectures: Solid state physics, Quantum mechanics, Electricity and magnetism, Optics
4.2. competences	Use of software packages for data analysis

4

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	N	Aultimedia infrastructure (videoprojector, PC)

5.2. for practicals/tutorials/projects	Equipments for electrical, optical and magnetic characterizations. Workstations
	with Linux operating system.

6. Specific competences acquired

0. Specific compete	inces acquired
Professional	C1 – Identification and correct use of physical laws and principles in given
competences	contexts
	C3 – Solving of physics problems in imposed conditions
	C4 – Performing of physics experiments by using standard laboratory
	equipments
	C5 – Analysis and communication/presentation of scientific data
Transversal	
competences	
	CT3 – Efficient use of the sources of scientific information and communica-
	tion of scientific data in English

7. Course objectives

7.1. General objective	Study of advanced topics in the physics of crystalline solids
7.2. Specific objectives	- Knowledge of specific physical theories and models used in advanced solid
	state physics
	- Developing the ability to creatively use specific physical models to solve
	problems and analyze experimental data
	- Knowledge and use of specific experimental characterization methods

8. Contents

aspects]

[theoretical aspects]

Bibliography:

interacting fermion and boson systems. [theoretical

Artificial neural networks for predicting electronic

properties. [Usage of specialized libraries]

- TensorFlow: https://www.tensorflow.org/

Atomistic calculation of semiconductor band structures

8.1. Lectures [chapters]	Teaching techniques	Observations
Physics of nanostructures. Introduction. Specific	Systematic exposition - lecture.	4 hours
electrical and optical properties.	Examples.	
Magnetic properties of solids. Applications. Spintronics.	Systematic exposition - lecture. Examples.	4 hours
Introduction to fractional exclusion statistics.	Systematic exposition - lecture.	4 hours
Applications	Examples.	
Atomistic methods for electronic properties of materials	Systematic exposition - lecture.	4 hours
	Examples.	
Machine learning techniques in condensed matter	Systematic exposition - lecture.	4 hours
physics.	Examples.	
Bibliography:		
- D.K. Ferry, S.M. Goodnick, Transport in Nanostructures	s (Cambridge Univ. Press, 2009, 2 nd e	d)
- S. Datta Electronic transport in Mesoscopic systems (Car	mbridge Univ. Press, Reprinted 1999))
- Electronic Structure – Basic Properties and Practical Met	hods (Cambridge Univ. Press, 2020)	
8.2. Tutorials	Teaching and learning	Observations
	techniques	Observations
Determination of electron transmission coefficients in	Seminar	2 hours
low-dimensional structures [Examples]		
Rashba effect. Spin filters. [Examples]	Seminar	2 hours
Applications of fractional exclusion statistics to	Seminar	2 hours

D.K. Ferry, S.M. Goodnick, Transport in Nanostructures (Cambridge Univ. Press, 2009, 2nd ed)
 S. Datta Electronic transport in Mesoscopic systems (Cambridge Univ. Press, Reprinted 1999)
 Electronic Structure – Basic Properties and Practical Methods (Cambridge Univ. Press, 2020)

Seminar

Seminar

2 hours

2 hours

8.3. Practicals	Teaching and learning techniques	Observations
Determination of electron transmission coefficients in low-dimensional structures. [Applied scattering theory]	Guided practical activity	4 hours
Rashba effect. Spin filters. [Applied scattering theory]	Guided practical activity	4 hours
Applications of fractional exclusion statistics to interacting fermion and boson systems. [Metropolis algorithm for transition rates]	Guided practical activity	4 hours
Atomistic calculation of semiconductor band structures. [SIESTA code]	Guided practical activity	4 hours
Artificial neural networks for predicting electronic properties. [TensorFlow, SciKit Learn applications]	Guided practical activity	4 hours
 Bibliography: D.K. Ferry, S.M. Goodnick, Transport in Nanostructures S. Datta Electronic transport in Mesoscopic systems (Car Electronic Structure – Basic Properties and Practical Met TensorFlow: https://www.tensorflow.org/ 	s (Cambridge Univ. Press, 2009, 2 nd e mbridge Univ. Press, Reprinted 1999) thods (Cambridge Univ. Press, 2020)	d))
8.4. Project	Teaching and learning techniques	Observations
Bibliography:	I	

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit aims at developing specific theoretical and practical competences and abilities in the field of advanced solid state physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research – e.g. the National R&D Institute for Materials Physics, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyze specific examples 	Written exam	50%
10.5.1. Tutorial	- ability to solve problems	Homeworks	25%
10.5.2. Practical	 ability to design and perform specific experiments ability to present and discuss the results 	Colloquium	25%
10.5.3. Project			

10.6. Minimal requirements for passing the exam

To obtain grade 5:

- Performing all experiments, presentation of Lab reports and grade 5 at Colloquium

- Correct solution for indicated subjects in homeworks and the final exam

Knowledge of basic elements: transmission functions and ballistic transport in nanostructures, spin filter effects, setup of an atomistic model, working principles of artificial neural networks.

Minimum participation: 50% lectures and 100% labs.

For online evaluations, the exam subjects shall be sent via email / Google Meet / Google Classroom / Microsoft Teams. During the exam the students shall have the camera on. The exam shall be recorded.

Date 2.11.2021 Teacher's name and signature Assoc. Prof. George Alexandru Nemnes Practicals/Tutorials instructor(s) name(s) and signature(s) Assoc. Prof. George Alexandru Nemnes,

Date of approval 11.11.2021

Head of Department Assoc. Prof. Adrian Radu

DO.311F.1.EN Electronic devices and circuits

1.	Study	program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid state and Biophysics
1.4.Field of study	Physics
1.5.Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

Electronic devi	ices and	d Circuits					
2.2. Teacher				Assoc Prof. RADU			
2.3. Tutorials/Practicals instructor(s)			Assoc. Prof. RADU				
2.5. Semester		2.6. Type of		2.7.	Content 1)	DS	
6	6	evaluation	E	Classification	m 2)	DO	
				of course unit	Type ²	DO	
	Electronic dev	Electronic devices and ctor(s) 2.5. Semester 6	Electronic devices and Circuits Assoc Prof. RAI ctor(s) Assoc. Prof. RA 2.5. Semester 2.6. Type of evaluation	Electronic devices and Circuits Assoc Prof. RADU ctor(s) Assoc. Prof. RADU 2.5. Semester 6 2.6. Type of evaluation E	Electronic devices and Circuits Assoc Prof. RADU ctor(s) Assoc Prof. RADU 2.5. Semester 2.6. Type of evaluation 2.7. 6 evaluation E Classification of course unit	Electronic devices and Circuits Assoc Prof. RADU Ctor(s) Assoc Prof. RADU 2.5. Semester 6 2.6. Type of evaluation 2.7. Content ¹⁾ 6 valuation E Classification of course unit Type ²⁾	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	0	Practicals	2	Project	0
3.2. Total hours per semester	40	distribution:	Lectures	20	Tutorials	0	Practicals	20	Project	0
3.3 Distribution of estimated time for study						hours				
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						30				
3.3.2. Research in library, study of electronic resources, field research						30				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks						21				
3.3.4. Examination						4				
3.3.5. Other activities						0				
3.4. Total hours of individual study 81										
3.5. Total hours per semester 125										
3.6. ECTS 5										

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and Magnetism, Real and Complex Mathematica Analysis
4.2. competencies	Use of software packages for data analysis and visualization

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Course room, projector, screen
5.2. for practicals/tutorials/projects	Lab room, experimental setups, power supplies, measurement instruments,
	oscilloscopes

6. Specific competences acquired

Professional	Ability to describe physical systems, using theoretical approaches and appropriate instruments
competencies	Ability to compare the results of numerical models and simulations with literature data or
	experimental measurements.
	Critical evaluation of the results of the implementation of physical models, including the uncertainity

	in experimental data. Ability to implement, improve and extend the use of a physical model. Ability to design and implement experimental setups and devices capable of validating a physical model.
Transversal	Efficient and responsible fulfillment of the professional duties, while respecting the deontological laws of the domain, under qualified supervision.
competencies	Efficient use of informational, communication and guided professional development resources in Romanian and another widespread foreign language.

7. Course objectives

7.1. General objective	An introduction to electronics: description of the main circuits and devices used in lab room: highlighting of dynamic and static characteristics: highlighting of	
	design and construction parameters; highlighting of circuit components;	
	exposition of dedicated measurement techniques; exhibition of suitable means of	
	calculating various physical parameters	
7.2. Specific objectives	Study of the most frequently used semiconductor devices and study of the	
	related physical processes involved. Applications. Study of various electronic	
	circuits and study of the related physical processes involved. Applications.	
	Systematic and logic way exposition of the physical phenomena and processes	
	involved so that to allow to student to solve future difficulties in this field.	

o. Contents		
8.1. Lectures[chapters]	Teaching techniques	Observations
Common collector amplifier, voltage gain, input, and output impedance. Boot-strap method for increasing input impedance. Applications.	Systematic exposition - lecture. Examples	4 hours
Common collector amplifier, voltage gain, input, and output impedance. Applications	Systematic exposition - lecture. Examples	4 hours
The power level of bipolar junction transistors. Working levels. Opposite working level. Distortions	Systematic exposition - lecture. Examples	4 hours
Electronic circuits feedback	Systematic exposition - lecture. Examples	2 hours
Delay time oscillators.	Systematic exposition - lecture. Examples	2 hours
Comparisons with hysteresis.	Systematic exposition - lecture. Examples	2 hours
Positive selective feedback of electronic circuits. Sinusoidal oscillators. Studies of how to stabilize the oscillation amplitude. Applications.	Systematic exposition - lecture. Examples	2 hours
 Bibliography: Mihai P Dinca, "Electronica - Manualul studentului", vol and M. Sadiku, "Fundamentals of electric circuits", McGra electric circuits", John Wiley & Sons, 2010 - R. Boylestad Prentice Hall - T. Floyd, "Electronic devices", Pearson Edu electronics", 2nd edition, Cambridge Unversity Press, 1994 	1, Editura Universitatii din Bucurest aw-Hill, 2009 - R. Dorf and J. Svobo and L. Nashelsky, "Electronic devic ucation, 2005 - P. Horowitz and W. H 4	i, 2003 C. Alexander da, "Introducton to es and circuit theory", Iill, "The art of
8.2. Tutorials	Teaching and learning techniques	Observations
Bibliography:		
8.3. Practicals	Teaching and learning techniques	Observations
8.3. Practicals Common collector amplifier	Teaching and learning techniques Guided practical activity	Observations 4 hours
8.3. Practicals Common collector amplifier Common base amplifier.	Teaching and learning techniques Guided practical activity Guided practical activity	Observations 4 hours 4 hours
8.3. Practicals Common collector amplifier Common base amplifier. Power amplifier.	Teaching and learning techniques Guided practical activity Guided practical activity Guided practical activity	Observations 4 hours 4 hours 4 hours

Integrated comparators	Guided practical activity	2 hours
		2 110013
Sine oscillators	Guided practical activity	4 hours
Bibliography:		
8.4. Project	Teaching and learning	Observetions
	techniques	Observations
Bibliography:	•	•

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

To sketch the contents, to choose the teaching/learning methods, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad. The content of the discipline is in line with the standards used in research and industry.

10. Assessment			
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	Clarity, coherence, and conciseness of the presentation; - Correct use of calculation relations; - Ability to exemplify; - Applying specific methods for solving the given problem;	Written exam and oral assessment	70%
10.5.1. Tutorial			
10.5.2. Practical	Applying specific methods for solving the given problem;Interpretation of results;	Laboratory colloquium	30%
10.5.3. Project			
10.6. Minimal requirements for	or passing the exam		
Completion of all laboratory v Obtaining a grade of 5 at the l	work and assessment with a grade of 5 at a boratory colloquium.	the final exam	
		Practicals/Tutorials instructor	(s)

Date	Teacher's name and signature	name(s) and signature(s)
9.11.2021	Assoc. Prof. Adrian RADU	Assoc. Prof. Adrian RADU
Date of approval		Head of Department

11.11.2021

Assoc. Prof. Adrian RADU

DO.311F.2 Introduction to Nanotechnologies

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	Introduction to Nanotechnologies		
2.2. Teacher		Associate Professor Ph.D. Eng. Vlad-Andrei ANTOHE	
2.3. Tutorials/Practicals instructor(s)		Associate Professor Ph.D. Sorina IFTIMIE	

2.4. Year of	2	2.5. и 2.6. Туре	2.6. Type of	2.7. Туре of	Content ¹⁾	DS		
study	3	Semester	11	evaluation	E	course unit	Type ²⁾	DO

¹⁾ fundamental (DF), speciality (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFac)

5

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Tutorials / Practicals	2	
3.2. Total hours per semester		distribution: Lecture	0 20	0 Tutorials / Practicals	20	
Distribution of estimated time for study					hours	
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					35	
3.2.2. Research in library, study of electronic resources, field research					15	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					25	
3.2.4. Examination					4	
3.2.5. Other activities					6	
3.3. Total hours of individual study 81						
3.4. Total hours per semester 125						

4. Prerequisites (if necessary)

3.5. ECTS

, ,	DFC.102F.EN – General Chemistry				
4.1. curriculum	DI.113F.EN – Electricity and Magnetism				
	DI.201F.EN – Optics				
	DI.210F.EN – Electronics				
	DI.303F.EN – Solid State Physics				
	DI.107F.EN, DI.115F.EN and DI.206F.EN – Scientific English				
	DFC.101F.EN – Object oriented programming				
4.2. competences	Basic skills of handling small laboratory equipment and tools.				
	Basic skills of data analysis and processing using dedicated software packages.				

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia room (Video-beamer, PC, Internet connectivity)
	Laboratory (place): MDEO research infrastructure, Nanotechnologies Lab.
5.2. for practicals/tutorials	Requirements: experimental settings for carrying out basic experiments on the
	preparation and characterization of nanomaterials

6. Specific competences acquired

_	1 1	
		C1 – Identify and make appropriate use of the main laws and principles of physics, in a given context.
Professional	C3 – Make use of computers and data acquisition boards to control basic experiments or processes,	
	and automation of experimental data collection.	
1	competences	C4 – Carry out basic experiments in physics by using specific laboratory equipment.
		C5 – Analyze and communicate basic scientific, educational and popular information on physics.
5	Fransversal	CT3 – Efficient use of trusted sources of scientific information and proficient communication of
0	competences	scientific data in English

7. Course objectives

7.1. General objective	Establishing the grounding of nanoscale sciences and technologies, as well as the basics for more advanced lectures in the field of preparation and characterization of nanomaterials and low-dimensional systems.
7.2. Specific objectives	 Getting basic knowledge on the preparation and characterization of nanostructured materials. Getting insights into the use of nanomaterials within electronic and optoelectronic devices. Getting basic skills on the laboratory working environment, as well as on the acquisition and interpretation of experimental data.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations

 Introduction into the nanoscale science and technology Emergent applications and nanotechnologies Examples. Evolution of the computing systems Breakthrough applications of nanotechnology 	Systematic exposition – Lecture. Critical discussions. Examples.	4 hours			
 Nanomaterials and low-dimensional systems Nanotechnology. Basic concepts and definitions Length's scale. Classification of nanostructures Physical effects at nanometer scale 	Systematic exposition – Lecture. Critical discussions. Examples.	4 hours			
 Preparation of nanomaterials and nanostructures Contamination in nanotechnology Cleanrooms. Classification and standards Cleanroom basic processes. Overview 	Systematic exposition – Lecture. Critical discussions. Examples.	4 hours			
 Synthesis of thin films and nanomaterials Basics on thin film deposition techniques Electrochemical processes in nanotechnology Surfaces manipulation and patterning 	Systematic exposition – Lecture. Critical discussions. Examples.	4 hours			
 Processing and manufacturing of silicon wafers Semiconducting silicon. Structural properties Fabrication of mono-crystalline silicon wafers Filed-effect transistors. Microchips design 	Systematic exposition – Lecture. Critical discussions. Examples.	4 hours			
 Bibliography: 1. V. A. Antohe, "Capacitive Sensors Based on Localized Nanowire Arrays. Nanotechnology & Device Integration Routes", Lambert Academic Publishing (LAP), 244 Pages, ISBN: 978-3-659-38899-6 (May 2013); 2. M. Di Ventra, S. Evoy, J. R. Heflin Jr., Kluwer, "Introduction to Nanoscale Science and Technology", Academic Publishers 2004, ISBN: 1-402-07757-2; 					
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations			
- 8.3. Practicals [practical activities, projects, etc.]	- Teaching and learning techniques	- Observations			
Vacuum thermal evaporation of metallic thin films	Guided practical activity	4 hours			
RF magnetron sputtering of inorganic thin films	Guided practical activity	4 hours			
Spin-coating processes of organic thin films	Guided practical activity	4 hours			
Nanomaterials synthesis by electrochemical processes	Guided practical activity	4 hours			
Morphological characterization of thin films and nanomaterials	Guided practical activity	4 hours			
 Bibliography: Laboratory practical sessions' booklet: 1. S. Antohe, L. Ion, F. Stanculescu, S. Iftimie, A. Radu and V. A. Antohe, "Fizica şi tehnologia materialelor semiconductoare – Lucrări practice", Ars Docendi, Universitatea din Bucureşti, ISBN: 978-973-558-940-0 (2016) Research papers linked to the content of this course unit: 1. O. Toma, V. A. Antohe, A. M. Panaitescu, S. Iftimie, A. M. Răduță, A. Radu, L. Ion and Ş. Antohe, "Effect of RF Power on the Physical Properties of Sputtered ZnSe Nanostructured Thin Films for Photovoltaic Applications", Nanomaterials 11(11), 2841 (2021), doi: 10.3390/nano11112841 2. S. Matéfi-Tempfli, M. Matéfi-Tempfli, A. Vlad, V. A. Antohe and L. Piraux, "Nanowires and nanostructures fabrication using template methods: a step forward to real devices combining electrochemical synthesis with lithographic 					
tecnniques", J. Mater. Sci – Mat. Electron. 20(1), 249-254 (2009), de 8.4. Project [only if included in syllabus]	01: 10.1007/s10854-008-9568-6 Teaching and learning techniques	Observations			
- Bibliography:	-	-			

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit aims at developing specific theoretical competences and practical abilities in the field of nanoscale sciences and technologies. The content corresponds to all national and European/international standards. The content of lectures and the teaching methods were carefully selected and framed after the content of similar course units within internationally-recognized universities from Romania and European Union (Leibniz Universität Hannover – Germany and Université Catholique de Louvain – Belgium). All lectures and the proposed experiments comply with the high standards requirements and expectations of our main employers of the graduates (industry sector, research institutes – i.e., National Institute of Materials Physics, elementary and high school teaching).

10. Assessment

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3. Weight			
ficating type			in final mark			
10.4. Lecture	- Coherence and clarity of exposition	Written test / Oral examination	30% / 30%			
	- Ability to use specific experimental					
	settings and equipment					
1052 Dracticals	- Ability to perform specific experiments and	L aboratory colloquium	40%			
10.J.2. Flacticals	to interpret scientific data		4070			
	- Ability to present and discuss the scientific					
	results					
10.6. Minimal require	ments for passing the exam					
-						
Requirements for mar	Requirements for mark 5 (10 points scale)					
- Carrying out all mar	- Carrying out all mandatory experiments and passing the laboratory colloquium					
- Correct answer to ba	asic questions					

Date 12.10.2021	Teacher's name and signature Assoc. Prof. Ph.D. Eng. Vlad-Andrei ANTOHE	Practical instructor, name(s) and signature(s) Assoc. Prof. Ph.D. Sorina IFTIMIE
Date of approval 11.11.2021	Head of Assoc. Prof. Ph	Department, .D. Adrian RADU

Optional courses

DFC.101F.EN Object oriented programming

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Structure of Matter, Physics of Earth and Atmosphere, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Object oriented progra				amming				
2.2. Teacher			Lect. Univ. Dr. Marius Călin/Lect.Univ.Dr. Alecsandru Chiroșca					
2.3. Tutorials/Practicals instructor(s)			Lect. Univ. Dr. Marius Călin/Lect.Univ.Dr. Alecsandru Chiroșca					
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DC
	1		1	evaluation	Е	Classification of course unit	Type ²⁾	DFac

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	0	Practicals	2	Proje ct	0
3.2. Total hours per semester	56	distribution:	Lectures	28	Tutorials	0	Practicals	28	Proje ct	0
3.3 Distribution of estimated time for study							hours			
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						20				
3.3.2. Research in library, study of electronic resources, field research						10				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks						10				
3.3.4. Examination						4				
3.3.5. Other activities										
3.4. Total hours of individual study 40										
3.5. Total hours per semester 100										
3.6. ECTS 4										

4. Prerequisites (if necessary)

4.1. curriculum	-
4.2. competencies	High school mathematics, fundamental algorithms

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials/projects	Computer room

6. Specific competences acquired

Professional competencies	 Using of dedicated software for data analysis and processing Solving physics problems in given conditions, using different OOP languages Interdisciplinary approach of some physics problems
Transversal competencies	- Efficient use of information and communication resources available.

7. Course objectives

7.1. General objective	Getting acquitted with computer programming basics, especially with C/C++,		
	Python, Java, C# programming language. Developing algorithms for solving		
	physical problems.		
7.2. Specific objectives	- knowledge of objects oriented programming languages specifics; physical		
	theories/models		
	- developing the ability of modeling and solving physical problems;		
	- using the computing skills for experimental and theoretical applications		

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
- Hardware. Computer architecture. Binary system.	Systematic exposition - lecture.	2 hours
- Software. Operation systems and programming	Examples	
languages. Short history.		
- Correlation between the scientific coding language and		
the solving problem type: model calculations,		
simulation, data acquisition and processing. Examples of		
complex codes.		
- Scientific languages mostly used in physics: evolution,		
general characteristics, distinctive features		
- Programming stages: problem solving, developing	Systematic exposition - lecture.	6 hours
algorithm, implementation, compilation, execution.	Examples	
- The basic of object oriented programming: abstraction,		
encapsulation, implementation, interface		
- C++ programming languages: basic, structure, main	Systematic exposition - lecture.	4 hours
characteristics, examples	Examples	
- Phyton: basic, structure, main characteristics, examples	Systematic exposition - lecture.	4 hours
	Examples	
- Java: basic, structure, main characteristics, examples	Systematic exposition - lecture.	4 hours

	Examples	
- C#: basic, structure, main characteristics, examples	Systematic exposition - lecture.	4 hours
	Examples	
- Examples of codes written in different OOP languages	Systematic exposition - lecture.	4 hours
	Examples	
Diblicgrapher		

Bibliography:

1. Bjarne Stroustrup – Principles and Practice Using C++ - Addison – Wesley Publishing Company, 2009

2. Peter Norton, Alex Samuel, David Aitel, Eric Foster-Johnson, etc - Beginning Python, Wiley Publishing, Inc. 2005

3. Ken Arnold, James Gosling, David Holmes - The Java Programming Language, Prentice Hall, 2005

4. Microsoft C# Language Specifications, Microsoft Press, 2001

5. <u>www.isocpp.org</u>

6. www.python.org

7.<u>www.java.co</u>m

8.2. Tutorials	Teaching and learning	Observations

Bibliography:

Dioliography		
8.3. Practicals	Teaching and learning techniques	Observations
- Introduction in OOP: basic applications	Guided practical activity	2 hours
- Using C++ for programming: applications	Guided practical activity	6 hours
- Using Phyton for programming: applications	Guided practical activity	6 hours
- Using Java for programming: applications	Guided practical activity	6 hours
- Using C## for programming: applications	Guided practical activity	6 hours
- Exemples of complex applications written in different	Guided practical activity	2 hours
OOP languages		

Bibliography:

1. Bjarne Stroustrup – Principles and Practice Using C++ - Addison – Wesley Publishing Company, 2009

2. Peter Norton, Alex Samuel, David Aitel, Eric Foster-Johnson, etc - Beginning Python, Wiley Publishing, Inc. 2005

3. Ken Arnold, James Gosling, David Holmes - <u>The Java Programming Language</u>, Prentice Hall, 2005

4. Microsoft C# Language Specifications, Microsoft Press, 2001

5. <u>www.isocpp.org</u>

6. <u>www.python.org</u>

 7.www.java.com
 Teaching and learning techniques
 Observations

 8.4. Project
 Teaching and learning techniques
 Observations

 Bibliography:
 Image: Comparison of the second secon

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities,

professional associations and employers (in the field of the study program)

This course unit develops practical competences and abilities which are fundamental for an undergraduate student in the field of modern Physics, corresponding to national and European/international standards.

The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union.

The contents are in line with the requirements/expectations of the main employers of the graduates (economy, research, education).

10. Assessment

Activity type	10.1 Accessment criteria	10.2. Assessment	10.3. Weight in
Activity type	10.1. Assessment criteria	methods	final mark
10.4. Lecture	 knowledge, understanding, coherence, logic and clarity of exposition 	Written test	45%
10.5.1. Tutorial			
10.5.2. Practical	- ability to model a problem, create an	Computer code	55%

	algorithm, implement it into a functional code written in at least two different OOP language						
10.5.3. Project							
10.6. Minimal requirements f	or passing the exam						
Participation to all practica	al activities and at least 7 lectures						
Solving 25% of the written	test.						
- Developing and presenting a code with a low degree of complexity but fully functional in two different OOP languages							
DateTeacher's name and signaturePracticals/Tutorials instructor(s)28.10.2021Lect. Univ. dr. Marius CălinLect. Univ. Dr. Alecsandru Chiroşca							
Date of approval 11.11.2021	, Head of Department Prof.Univ.Dr. Alexandru Jipa						

DFC.102F.EN General Chemistry

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	General Chemistry					
2.2. Teacher		Assoc.Prof. dr. er	Assoc.Prof. dr. eng. Marcela-Elisabeta Bărbînță-Pătrașcu			
2.3. Tutorials/Practicals instruc	ctor(s)	Assoc.Prof. dr. er	Assoc.Prof. dr. eng. Marcela-Elisabeta Bărbînță-Pătrașcu			
2.4. Year of study	2.5. Semester	2.6. Type of		2.7.	Content 1)	DC
1	1	evaluation	С	Classification	Type ²⁾	DEC
				of course unit	турс	DIC

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials		Practicals	2	Project	
3.2. Total hours per semester	56	distribution:	Lectures	28	Tutorials		Practicals	28	Project	
3.3 Distribution of estimated time for study hour								hours		
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 13							13			
3.3.2. Research in library, study of electronic resources, field research1							12			
3.3.3. Preparation for prac	ticals/	tutorials/project	s/reports/ho	omewo	rks					15
3.3.4. Examination 4							4			
3.3.5. Other activities										
3.4. Total hours of individual study 40										
3.5. Total hours per semester 100										
3.6. ECTS				2	1					

4. Prerequisites (if necessary)

	57
4.1. curriculum	
4.2. competencies	Use of software packages for data analysis

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (videoprojector, PC), Internet access
5.2. for	Laboratory rooms equipped with:
5.2. for practicals/tutorials/projects	Laboratory rooms equipped with: • Modern equipment, instruments and accessories: modern laboratory glassware; Sartorius analytical balance; Analytical balance Kern ABS 220-4N, 220g; Kern precision scales; pipettes; micropipettes; manual and electronic pipetting devices; magnetic stirrers with and without heating; computers; mechanical stirrer (VIBRAX stirrer); pH-meters (stationary: Fisher Scientific; portable: pH 110 Exstik); Conductometer 3110 WTW; ovens with thermostat and electronic display; water purification system Milli-Q (conductivity $\leq 0.1 \ \mu$ S cm ⁻¹); Titan probe sonicator Hielscher UP 100H; Ultrasonic bath BRANSON 1210; Water bath with electronic display and recirculation; SIGMA 2-16 K cooling centrifuge; spectrophotometers; UV-Vis single-beam spectrophotometer (model UV-20) ONDA; Temperature sensor with electronic display; Fisher Scientific Vortex Agitator, 1500 rpm; Ostwald viscometer; specific reagents; refrigerator; high- performance air conditioners, etc. • Interactive practical laboratory equipment - Phywe experimental set-up, computer assisted.
	• Computers with internet connection, tables, video projector, screen, blackboard,

6. Specific competences acquired

of opecane compe	
Professional	Identification and correct use of physical laws and principles in given contexts.
competences	Analysis and communication/presentation of scientific data.
	Interdisciplinary approach of topics in physics.
Transversal	Efficient use of the sources of scientific information and communication of scientific data in English
competences	

7. Course objectives

7. Gouise objectives	
7.1. General objective	The aim of this course is to introduce students to the fundamentals of General
	Chemistry, to understand the concepts of composition, physico-chemical
	properties and transformations of matter and energy involved in these
	transformations.
7.2. Specific objectives	Knowledge of specific physical theories and models used in General Chemistry.
	Using the acquired knowledge to solve specific problems in General Chemistry.
	Performing and interpretation of experiments.

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
Introduction to chemistry. Branches of chemistry. The importance of	Systematic exposition -	2 hours
chemistry. Tangency of chemistry with other disciplines. Chemistry laws.	lecture. Examples	
Matter: definition, properties (intensive, extensive), aggregation states.	Systematic exposition -	2 hours
Antimatter. Mixtures: definition, types. Atom: definition, structure,	lecture. Examples	
component particles. Atomic orbitals.		
Periodic system of elements; the law of periodicity; explaining and	Systematic exposition -	4 hours
interpreting the relationship between the electronic configuration, the	lecture. Examples.	
position in the periodic table and the specific properties of each element.	Applications	
Electronic configuration (<i>in extenso</i> and short). The chessboard rule. The		
distinctive electron. The valence electrons and the Lewis structure.		
Metals, non-metals, metalloids: definition, properties, examples. General		
characterization (physical and chemical properties, applications) of the		
elements of s, p, d, f blocks. Biologically important elements.		
Shape memory materials.		
Allotropy; examples of allotropic elements. Carbon nanotubes -	Systematic exposition -	4 hours
applications.	lecture. Examples	
Chemical bonds. Intermolecular interactions	Systematic exposition -	2 hours
	lecture. Examples.	
	Applications	
Water: structure, biological role, unusual properties of water, solvent	Systematic exposition -	2 hours
properties, ionization, pH of solutions.	lecture. Examples.	
	Applications	
Chemical reactions. Classification of chemical reactions. Chemical	Systematic exposition -	4 hours

Applications Applications Notions of thermodynamics and kinetics of chemical reactions. Applications Server Chemistry, Principles and applications in engineering, environment, agriculture, nanotechnology, medicine, materials science. Systematic exposition - lecture. Examples. Critical analysis. Applications General considerations regarding Green Nanotechnology - the science of the future. Bottom-up methods for ecological development of nanomaterials. Applications Systematic exposition - lecture. Examples. Critical analysis. Applications Bibliography: Popa, N., Chimie generală, curs, Editura Universității din București, 1900. Neniţescu, C. D., Chimie generală, Editura Științifică, București, 1978. Linus Pauling, Chimie generală, Editura Stiințifică, București, 1988. Lower, S. K., General Chemistry, 1999. Parotă, A., Vasile, A. D., Probleme de chimie aglicată, vol. 1, Editura Tehnică, București, 1978. Linus Pauling, Chimie generală, Editura Stiințifică, București, 1988. Lower, S. K., General Chemistry, 1999. Parotă, A., Vasile, A. D., Probleme de chimie agnicată, dura Tehnică, București, 1979. Gănescu, I., Pătroescu, C., Răileanu, M., Florea, S., Ciocioc, A., Brinzan, Gh., Chimie pentru definitivat, Editura Didactică și Pedagogică, București, 1989. P. Aktins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Martia Brezeau- Chimia treatelaci, Edu				
Notions of thermodynamics and kinetics of chemical reactions. Image: Characterization of thermodynamics and kinetics of chemical reactions. Green Chemistry. Principles and applications in engineering, environment, agriculture, nanotechnology, medicine, materials science. Systematic exposition - lecture. Examples. Critical analysis. Applications General considerations regarding Green Nanotechnology - the science of the future. Bottom-up methods for ecological development of analysis. Applications 4 hours Bibliography: Popa, N., Chimie generalà, curs, Edirura Universității din București, 2000. 4 hours E Ebbing, De Darrell D., Gammon, S. D., General Chemistry, Cengage Learning, 2009. Nenitescu, C. D., Chimie generalà, Editura Stithtfică, București, 1988. 4 hours Lower, S. K., General Chemistry, 1999. Parotă, A., Vasile, A. D., Probleme de chimie arganică, Editura Tehnică, București, 1979. 5 Gânescu, L. Pătrocscu, C., Răliena, M., Florea, S., Ciocice, A., Brinzan, Gh., Chimie pentru definitivat, Editura Didactică și Pedagogică, București, 1979. Ganescu, L., Pătrocscu, C., Rălianu, M., Florea, S., Ciocice, A., Brinzan, Gh., Chimine pentru definitivat, Editura Didactică și Pedagogică, București, 1988. 5 Astene, P., Popescu, Şt., Chimie gentru studenți - note de curs (pd). Maria Brezenau - Chimiat matalelor, Editura Academici Române, București, 1990. 5 Anne E. Marteel-Parish and Martin A. Abrabam, Green Chemistry and Engineering: A Pathway to. Sustainability, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTile/productCd-0470413263.html				
Green Chemistry, Principles and applications in engineering, environment, agriculture, nanotechnology, medicine, materials science. Systematic exposition - lecture. Examples. Critical analysis. Applications 4 hours General considerations regarding Green Nanotechnology - the science of the future. Bottom-up methods for ecological development of nanomaterials. Applications 4 hours Bibliography: Popa, N., Chimie generală, curs. Editura Universității din București, 2000. 4 hours Bibliography: Popa, N., Chimie generală, Editura Stintțifică, București, 1988. 5 Lower, S. K., <i>General Chemistry</i> , 1999. 8 5 Parotă, A., Vasile, A. D., Probleme de chimie aprilcată, vol. 1, Editura Tehnică, București, 1988. 5 Arsene, P., Popescu, Ş., Chimie și probleme de chimie arganică, Editura Tehnică, București, 1979. 5 Gănescu, I., Pătroescu, C., Răileanu, M., Florea, S., Ciocioc, A., Brinzan, Gh., Chimie pentru definitivat, Editura Indiactică și predagogică, București, 1989. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Fereman (New York, 2010). R. Chang, Chemistry, BH Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Zudentie Române, București, 1990. Annee E. Marteel-Parish and Martin A. Abraham, Green Chemistry and Engineering: A Pathway to. Sustainability, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTule/productGd- 0470413263.html Bărbință-Pătrașcu, M. E.				
environment, agriculture, nanotechnology, medicine, materials science. lecture. Examples. Critical analysis. Applications General considerations regarding Green Nanotechnology - the science of the future. Bottom-up methods for ecological development of anomaterials. Applications 4 hours Ibiliography: Popa, N., Chimie generalä, curs, Editura Universității din București, 2000. 4 hours Ebbling. De Darrel D., Gammon, S. D., General Chemistry, Cengage Learning, 2009. Neniţescu, C. D., Chimie generală, Editura Stitințifică, București, 1988. Lower, S. K., General Chemistry, 1999. Parotă, A., Vasile, A. D., Probleme de chimie aplicată, vol. 1, Editura Tehnică, București, 1988. Arsene, P., Popescu, Şt., Chimie și probleme de chimie organică, Editura Tehnică, București, 1979. Gänescu, I., Pătroscu, C., Rălleanu, M., Florea, S., Ciocioc, A., Brînzan, Gh., Chimie pentru definitivat, Editura Didactică și Pedagogică, București, 1979. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Academiei Române, București, 1990. Annee E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i> . Sustainability. 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyThideproductCd-0470413263.html Bătbindi-Pătraşcu, M. E., Chimie pentru studenți - note de curs (pdf). Marcela-Elisabeta Barbinta-Patrascu, Yulia Gorshkova; Camelia Ungureanu, Nicoleta Badea; Gizo Bokuch				
analysis. Applications General considerations regarding Green Nanotechnology - the science of the future. Bottom-up methods for ecological development of nanomaterials. Applications. 4 hours Bibliography: Popa, N., Chimie generalä, curs, Editura Universității din Bucureşti, 2000. 1 Ebbing, De Darrell D., Gammon, S. D., General Chemistry, Cengage Learning, 2009. 1 Neniţescu, C. D., Chimie generală, Editura Stinițifică, Bucureşti, 1988. 2009. Linus Pauling, Chimie generală, Editura Stinițifică, Bucureşti, 1988. 2009. Arsene, P., Popescu, Şt., Chimie și probleme de chinie organică, Editura Tehnică, Bucureşti, 1988. 2 Arsene, P., Popescu, Şt., Chimie și probleme de chinie organică, Editura Tehnică, Bucureşti, 1979. Gănescu, I., Pătroscu, C., Rălieanu, M., Florea, S., Ciocioc, A., Brinzan, Gh., Chimie pentru definitivat, Editura Didactică și Pedagogică, Bucureşti, 1989. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). 8. R. Chang, Chemistry, Bh Ed., McGraw-Hill (New York, 2004). 4. Maria Brezeanu - Chimia pentru studenți - note de curs (pdl). 4. Bărbință-Pătraşcu, M. E., Chimie pentru studenți - note de curs (pdl). 4. Marcela-Elisabeta Barbinta-Patrascu; Mulez, 2013 http://eu.wiley.com/WileyCDA/WileyThileproductCd- 0470413263.html 9. Bărbință, Bacalum, N.; Turchenk				
General considerations regarding Green Nanotechnology - the science of he future. Bottom-up methods for ecological development of nanomaterials. Applications. 4 hours Bibliography: Popa, N., Chimie generală, curs, Editura Universității din București, 2000. 5 Popa, N., Chimie generală, curs, Editura Universității din București, 2000. 5 Linus Pauling, Chimie generală, Editura Stituțifică, București, 1978. 5 Linus Pauling, Chimie generală, Editura Stituțifică, București, 1988. 5 Lower, S. K., General Chemistry, 1999. 7 Parotă, A., Vasile, A. D., Probleme de chimie organică, Editura Tehnică, București, 1978. 6 Ginescu, I., Pătroescu, Şt., Chimie și probleme de chimie organică, Editura Tehnică, București, 1979. 6 Ginescu, I., Pătroescu, Şt., Chimie și probleme de chimie organică, Editura Tehnică, București, 1979. 7 Ginescu, I., Pătroescu, Şt., Chimie și probleme de chimie organică, Editura Tehnică, București, 1980. 8 Arseranu - Chimia metalelor, Editura Academiei Române, București, 1990. 8 Anne E. Marteel-Parish and Martin A. Abraham, Green Chemistry and Engineering: A Pathway to 5 Sustinability, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470413263.html 8 Barbinită -Pătrașcu, M. E., Chimie pentru studenți - note de curs (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia				
the tuture. Bottom-up methods for ecological development of ananysis. Applications lecture. Examples. Critical analysis. Applications libiliography: Popa, N., <i>Chimie generalä</i> , curs, Editura Universității din București, 2000. Ebbing, De Darrell D., Gammon, S. D., <i>General Chemistry</i> , Cengage Learning, 2009. Nenițescu, C. D., <i>Chimie generală</i> , Editura Didactică și Pedagogică, București, 1978. Linus Pauling, <i>Chimie generală</i> , Editura Stiințifică, București, 1988. Lower, S. K., <i>General Chemistry</i> , 1999. Parotă, A., Vasile, A. D., <i>Probleme de chimie aplicată</i> , vol. 1, Editura Tehnică, București, 1988. Ansene, P., Popescu, Şt., <i>Chimie și probleme de chimie organică</i> , Editura Tehnică, București, 1979. Gänescu, I., Pătroscu, C., Räleanu, M., Florea, S., Ciocioc, A., Brînzan, Gh., <i>Chimie pentru definitivat</i> , Editura Didactică și Pedagogică, București, 1989. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Academiei Române, București, 1990. Anne E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i> . Sustainability, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTile/productCd- 0470413263.html Bărbînțā-Pătraşcu, M. E., <i>Chimie pentru studenți - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrović, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF ₂₀₀₇ = 3.623; Al5 ₂₀₀₇ =0.579) Mironescu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Galązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF ₂₀₀₇ = 5.076; Al5 ₂₀₀₇ =0.759) Marcela-Elisabeta Barbi				
 nanomateriais. Applications. Popa, N., Chimie generală, curs, Editura Universității din București, 2000. Ebbing, De Darrell D., Gammon, S. D., General Chemistry, Cengage Learning, 2009. Neniţescu, C. D., Chimie generală, Editura Didactică și Pedagogică, București, 1978. Linus Pauling, Chimie generală, Editura Stiințifică, București, 1988. Lower, S. K., General Chemistry, 1999. Parotă, A., Vasile, A. D., Probleme de chimie aplicată, vol. 1, Editura Tehnică, București, 1978. Gânescu, I., Pătroescu, C., Răileanu, M., Florea, S., Clocioc, A., Bfinzan, Gh., Chimie pentru definitivat, Editura Didactică și Pedagogică, București, 1989. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Academie Române, București, 1990. Anne E. Marteel-Parish and Martin A. Abraham, Green Chemistry and Engineering: A Pathway to. Sustainability. 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470413263.html Bărbință-Pătraşcu, M. E., Chimie pentru studenți - note de curs (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, Materials 14(16), 4726, 2021. (Q1; IF₂₀₀₇ 3.623; AlS₂₀₀₇ 0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. Nanomaterials 11(7), 1811, 2021. (Q1; IF				
 Popol, N., <i>Chimie generală</i>, curs, Editura Universității din București, 2000. Ebbing, De Darrell D., Gammon, S. D., <i>General Chemistry</i>, Cengage Learning, 2009. Neniţescu, C. D., <i>Chimie generală</i>, Editura Didactică și Pedagogică, București, 1978. Linus Pauling, <i>Chimie generală</i>, Editura Stiinţifică, București, 1988. Lower, S. K., <i>General Chemistry</i>, 1999. Parotă, A., Vasile, A. D., <i>Probleme de chimie organică</i>, Editura Tehnică, București, 1978. Ansene, P., Popescu, Şt., <i>Chimie și probleme de chimie organică</i>, Editura Tehnică, București, 1979. Gănescu, I., Pătroescu, C., Răileanu, M., Florea, S., Ciocioc, A., Brînzan, Gh., <i>Chimie pentru definitivat</i>, Editura Didactică și Pedagogică, București, 1989. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Academiei Române, București, 1990. Anne E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i>. Sustainability, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTite/productCd-0470413263.html Bărbință-Pătraşcu, M. E., <i>Chimie pentru studenți - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materilas</i> 14(16), 4726, 2021. (Q1; IF₂₀₀₅ 3.16597) Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/S				
 Ebbig, De Darrell D., Gammon, S. D., General Chamistry, Cengage Learning, 2009. Nenitgscu, C. D., Chimie generalà, Editura Didactică și Pedagogică, București, 1978. Linus Pauling, Chimie generalà, Editura Stiințifică, București, 1988. Lower, S. K., General Chemistry, 1999. Parotă, A., Vasile, A. D., Probleme de chimie aplicată, vol. 1, Editura Tehnică, București, 1988. Arsene, P., Popescu, Şt., Chimie și probleme de chimie organică, Editura Tehnică, București, 1979. Gănescu, I., Pătroescu, C., Rălleanu, M., Florea, S., Ciocioc, A., Brînzan, Gh., Chimie pentru definitivat, Editura Didactică și Pedagogică, București, 1989. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Academiei Române, București, 1990. Anne E. Marteel-Parish and Martin A. Abraham, Green Chemistry and Engineering: A Pathway to. Sustainability, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470413263.html Bărbință-Pătraşcu, M. E., Chimie pentru studenți - note de curs (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, Materials 14(16), 4726, 2021. (Q1; IF₂₀₀₉ 3.623; AlS₂₀₀₇ 0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.'; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. Nanomaterials 11(7), 1811, 2021. (Q1; IF₂₀₀₉ 5.076; AlS₂				
 Neniţescu, C. D., <i>Chimie generală</i>, Editura Didactică şi Pedagogică, Bucureşti, 1978. Linus Pauling, <i>Chimie generală</i>, Editura Ştiinţifică, Bucureşti, 1988. Lower, S. K., <i>General Chemistry</i>, 1999. Parotă, A., Vasile, A. D., <i>Probleme de chimie aplicată</i>, vol. 1, Editura Tehnică, Bucureşti, 1988. Arsene, P., Popescu, Şt., <i>Chimie şi probleme de chimie organică</i>, Editura Tehnică, Bucureşti, 1979. Gănescu, I., Pătroescu, C., Răileanu, M., Florea, S., Clocico, A., Brînzan, Gh., <i>Chimie pentru definitivat</i>, Editura Didactică și Pedagogică, Bucureşti, 1989. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Academiei Române, Bucureşti, 1990. Anne E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i>. Sustainability, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470413263.html Bărbînţă-Pătraşcu, M. E., <i>Chimie pentru studenți - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunoy; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turneric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₂₀ 3.623; AIS₂₀₂₀ 0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Râileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀ = 5.076; AIS₂₀₂₀ = 0.759) Mironescu, M.; Laz				
 Linus Pauling, <i>Chimie generalä</i>, Editura Ştiințifică, Bucureşti, 1988. Lower, S. K., <i>General Chemistry</i>, 1999. Parotă, A., Vasile, A. D., <i>Probleme de chimie aglicată</i>, vol. 1, Editura Tehnică, Bucureşti, 1988. Arsene, P., Popescu, Şt., <i>Chimie şi probleme de chimie organică</i>, Editura Tehnică, Bucureşti, 1979. Gănescu, I., Pătroescu, C., Răileanu, M., Florea, S., Ciocioc, A., Brînzan, Gh., <i>Chimie pentru definitivat</i>, Editura Didactică și Pedagogică, Bucureşti, 1989. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Academiei Române, Bucureşti, 1990. Anne E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i>. Sustainability, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470413263.html Bärbinfä-Pätraşcu, M. E., <i>Chimie pentru studenți - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, Materials 14(16), 4726, 2021. (Q1; IF₂₀₀₇ = 3.623; AIS₂₀₀₇ = 0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.⁺; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Räileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. Nanomaterials 11(7), 1811, 2021. (Q1; IF₂₀₂₇ = 5.076; AIS₂₀₂₇ = 0.559) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.⁺; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel S				
 Lower, S. K., <i>General Chemistry</i>, 1999. Parotă, A., Vasile, A. D., <i>Probleme de chimie aplicată</i>, vol. 1, Editura Tehnică, Bucureşti, 1988. Arsene, P., Popescu, Şt., <i>Chimie şi probleme de chimie organică</i>, Editura Tehnică, Bucureşti, 1979. Gănescu, I., Pătroescu, C., Răileanu, M., Florea, S., Ciocioc, A., Brînzan, Gh., <i>Chimie pentru definitivat</i>, Editura Didactică și Pedagogică, Bucureşti, 1989. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Academiei Române, Bucureşti, 1990. Anne E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i>. <i>Sustainability</i>, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470413263.html Bärbinfä-Pätraşcu, M. E., <i>Chimie pentru studenți - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunoy; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₀= 3.623; AIS₂₀₀=0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.⁺; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.⁺; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health.				
 Parotă, A., Vasile, A. D., <i>Probleme de chimie aplicată</i>, vol. 1, Editura Tehnică, Bucureşti, 1988. Arsene, P., Popescu, Şt., <i>Chimie și probleme de chimie organică</i>, Editura Tehnică, Bucureşti, 1979. Gănescu, I., Pătroescu, C., Răileanu, M., Florea, S., Ciocioc, A., Brînzan, Gh., <i>Chimie pentru definitivat</i>, Editura Didactică și Pedagogică, Bucureşti, 1989. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Academiei Române, Bucureşti, 1990. Anne E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i>. <i>Sustainability</i>, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470413263.html Bărbîntă-Pătraşcu, M. E., <i>Chimie pentru studenți - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₀₉= 3.623; AIS₂₀₀₂=0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.⁺; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Räileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₉= 5.076; AIS₂₀₂₉=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.⁺; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₉= 1.785; AI				
 Arsene, P., Popescu, Şt., Chimie şi probleme de chimie organică, Editura Tehnică, Bucureşti, 1979. Gănescu, I., Pătroescu, C., Răileanu, M., Florea, S., Ciocioc, A., Brînzan, Gh., Chimie pentru definitivat, Editura Didactică și Pedagogică, Bucureşti, 1989. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Academiei Române, Bucureşti, 1990. Anne E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i>. Sustainability, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470413263.html Bărbînță-Pătraşcu, M. E., Chimie pentru studenți - note de curs (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₀₉ 5.6597) Gorshkova, Y.; Barbinta-Patrascu, ME.'; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Räileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₀₉ 5.076; AIS₂₀₀₉ 0.599) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₀₉ 4.329; AIS₂₀₀₉ 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sor				
 Ganescu, I., Patrosecu, C., Ralieanu, M., Florea, S., Clocice, A., Brinzan, Gh., Chimie pentru depinitival, Editura Didactică şi Pedagogică, Bucureşti, 1989. P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Academiei Române, Bucureşti, 1990. Anne E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i>. <i>Sustainability</i>, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470413263.html Bărbînţă-Pătraşcu, M. E., <i>Chimie pentru studenți - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₀₂= 3.623; AIS₂₀₀₂=0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₀₉= 5.076; AIS₂₀₀₅=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₀₉= 4.329; AIS₂₀₂₉ = 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in oste				
 P. Atkins and L. Jones, Chemical Principles: the quest for insight, 5th Ed., Freeman (New York, 2010). R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York, 2004). Maria Brezeanu - Chimia metalelor, Editura Academiei Române, Bucureşti, 1990. Anne E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i> <i>Sustainability</i>, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd- 0470413263.html Bärbintä-Pätraşcu, M. E., <i>Chimie pentru studenți - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₂₀= 3.623; AIS₂₀₂₀=0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀= 0.599) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R.				
 R. Chang, Chemistry, 8th Ed., McGraw-Hill (New York 2004). Maria Brezeanu - Chimia metalelor, Editura Academiei Române, Bucureşti, 1990. Anne E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i>. <i>Sustainability</i>, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470413263.html Bärbînţā-Pătraşcu, M. E., <i>Chimie pentru studenţi - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₂₀= 3.623; AIS₂₀₂₀=0.597) Gorshkova, Y.; Barbînta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀= 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic				
 Maria Brezeanu - Chimia metalelor, Editura Academiei Române, Bucureşti, 1990. Anne E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i>. <i>Sustainability</i>, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd- 0470413263.html Bărbînţă-Pătraşcu, M. E., <i>Chimie pentru studenți - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₂₀= 3.623; AIS₂₀₂₀=0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀ = 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀ = 0.268) Marcela-Elisabeta Barbinta-Patrascu, Ni Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus</i> <i>aromaticus</i> - "green" synthesized nano-				
 Anne E. Marteel-Parish and Martin A. Abraham, <i>Green Chemistry and Engineering: A Pathway to</i>. <i>Sustainability</i>, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470413263.html Bărbînță-Pătraşcu, M. E., <i>Chimie pentru studenți - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₂₀= 3.623; AIS₂₀₂₀=0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀ = 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leavees: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Scienc</i>				
 Sustainability, 376 pages, Published by Wiley, 2013 http://eu.wiley.com/WileyCDA/WileyTitle/productCd- 0470413263.html Bărbînţă-Pătraşcu, M. E., Chimie pentru studenţi - note de curs (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₂₀= 3.623; AIS₂₀₂₀=0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀= 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus</i> <i>aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 D470413263.html Bărbînţă-Pătraşcu, M. E., <i>Chimie pentru studenţi - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₂₀= 3.623; AIS₂₀₂₀=0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀= 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 Bärbînţă-Pătraşcu, M. E., <i>Chimie pentru studenţi - note de curs</i> (pdf). Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₂₀= 3.623; AIS₂₀₂₀=0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀= 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₂₀= 3.623; AIS₂₀₂₀=0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀= 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉= 5.88; AIS₂₀₁₉ = 0.794). 				
 Bokuchava, Anturada Lazed-Stoyanova, Minaela Bacahuli, Alexander Zingunov, Sanja M. Petrovic, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, <i>Materials</i> 14(16), 4726, 2021. (Q1; IF₂₀₂₀= 3.623; AIS₂₀₂₀=0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀ = 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 2021. (Q1; IF₂₀₂₀= 3.623; AIS₂₀₂₀=0.597) Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀ = 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus</i> <i>aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 Gorshkova, Y.; Barbinta-Patrascu, ME.*; Bokuchava, G.; Badea, N.; Ungureanu, C.; Lazea-Stoyanova, A.; Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀ = 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 Răileanu, M.; Bacalum, M.; Turchenko, V.; Zhigunov, A.; Juszyńska-Gałązka, E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀ = 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. <i>Nanomaterials</i> 11(7), 1811, 2021. (Q1; IF₂₀₂₀= 5.076; AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀ = 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 AIS₂₀₂₀=0.759) Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.*; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀ = 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.; Virchea, LI.; Rexhepi, D.; Mathe, E.; Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀ = 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 Georgescu, C., Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. <i>Polymers</i> 13, 1190, 2021. (Q1; IF₂₀₂₀= 4.329; AIS₂₀₂₀ = 0.599) Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 Marcela-Elisabeta Barbinta-Patrascu, Mihaela Bacalum, Vlad-Andrei Antohe, Sorina Iftimie, Stefan Antohe, Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 Bio-nanoplatinum phyto-developed from grape berries and nettle leaves: potential adjuvants in osteosarcoma treatment, <i>Rom.Rep.Phys.</i> 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
 Rom.Rep.Phys. 74(1), 2022. (Q3; IF₂₀₂₀= 1.785; AIS₂₀₂₀= 0.268) Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF₂₀₁₉ = 5.88; AIS₂₀₁₉ = 0.794). 				
Marcela-Elisabeta Barbinta-Patrascu, N. Badea, M. Bacalum, C. Ungureanu, I. R. Suica-Bunghez, S. M. Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF ₂₀₁₉ = 5.88; AIS ₂₀₁₉ = 0.794).				
Iordache, C. Pirvu, I. Zgura, V. A. Maraloiu, 3D hybrid structures based on biomimetic membranes and <i>Caryophyllus aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019 . (Q1; IF ₂₀₁₉ = 5.88 ; AIS ₂₀₁₉ = 0.794).				
<i>aromaticus</i> - "green" synthesized nano-silver with improved bioperformances, <i>Materials Science & Engineering C-Materials For Biological Applications</i> 101, 120-137, 2019. (Q1; IF ₂₀₁₉ = 5.88; AIS ₂₀₁₉ = 0.794).				
Materials For Biological Applications 101, 120-137, 2019. (Q1; $1F_{2019} = 5.88$; A1S ₂₀₁₉ = 0.794).				
Materials For Biological Applications 101, 120-137, 2019. (Q1; IF ₂₀₁₉ = 5.88; AIS ₂₀₁₉ = 0.794).				
Marcela-Elisabeta Barbinta-Patrascu, Nicoleta Badea, Camelia Ungureanu, Stefan Marian Iordache, Marioara Constantin, Violeta Purcar, Cristian Pirvu and Ileana Rau, Eco-Biophysical Aspects on Nanosilver Bio-				
Generated from Citrus reticulata Peels, as Potential Bio-Pesticide for Controlling Pathogens and Wetland Plants in				
Aquatic Media, Journal of Nanomaterials, vol. 2017, Article ID 4214017, 2017. (Q2; IF ₂₀₁₇ = 2.207; AIS ₂₀₁₇ = 0.565).				
8.2. Tutorials Teaching and learning Observations				
techniques				
Pibliography				
Dibilography.				
8.3. Practicals Construction Co				
Instructions for safety and health at work for activities in General Systematic exposition - 1 hour				
Chemistry lab. lecture. Conversations.				
Examples. Applications.				
Examples. Applications. Guided practical activity				
Examples. Applications. Guided practical activity Familiarization with laboratory equipment and accessories. Guided practical activity Types of concentrations: measurement units. Solving problems				

Preparation of solutions of a certain concentration. Successive dilutions.	lecture. Conversations.	
Mixtures.	Examples. Applications.	
	Guided practical activity	
Measurement of pH of water samples	Guided practical activity	2 hours
Measurement of conductivity of water samples	Guided practical activity	2 hours
Finding the formula for hydrated copper (II) sulfate.	Guided practical activity	2 hours
Chemical reactions (neutralization, decomposition, precipitation, redox	Guided practical activity	4 hours
processes)		
Ecological methods for obtaining metal nanoparticles, using the	Guided practical activity.	5 hours
principles of "Green Chemistry" - phytosynthesis. Spectral	Applications.	
characterization. Solving specific problems.		
Preparation of bioplastic from plant materials.	Guided practical activity	4 hours
Discussing laboratory reports. Solving problems and tests of General	Conversations. Examples.	4 hours
Chemistry.	Applications	
Dibliography		

Bibliography:

Marcela-Elisabeta Barbinta-Patrascu; Yulia Gorshkova; Camelia Ungureanu; Nicoleta Badea; Gizo Bokuchava; Andrada Lazea-Stoyanova; Mihaela Bacalum; Alexander Zhigunov; Sanja M. Petrovič, Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles, *Materials* 14(16), 4726, 2021. (Q1; IF₂₀₂₀= 3.623; AIS₂₀₂₀=0.597)

• **Marcela-Elisabeta Barbinta-Patrascu**, Camelia Ungureanu, Nicoleta Badea, Mihaela Bacalum, Andrada Lazea-Stoyanova, Irina Zgura, Catalin Negrila, Monica Enculescu and Cristian Burnei, Novel Ecogenic Plasmonic Biohybrids as Multifunctional Bioactive Coatings, *Coatings* 10, 659, **2020**; WOS:000556474000001.

Marcela Elisabeta Barbinta-Patrascu, Nicoleta Badea, Mihaela Bacalum, Camelia Ungureanu, Ioana Raluca Suica-Bunghez, Stefan Marian Iordache, Cristian Pirvu, Irina Zgura, Valentin Adrian Maraloiu, 3D hybrid structures based on biomimetic membranes and *Caryophyllus aromaticus* - "green" synthesized nano-silver with improved bioperformances, *MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS* 101, 120-137, 2019. DOI: 10.1016/j.msec.2019.03.069, WOS:000471359100012; https://doi.org/10.1016/j.msec.2019.03.069 (IF = 5.88 / 2019).

• **Marcela-Elisabeta Barbinta-Patrascu**, Nicoleta Badea, <u>Camelia Ungureanu</u>, Marioara Constantin, Cristian Pirvu, Ileana Rau. Silver-based biohybrids "green" synthesized from *Chelidonium majus* L., *Opt. Mat.*, 56 (2016) 94–99.

• **M. E. Barbinta-Patrascu**, I.R. Bunghez, S. M.Iordache, N. Badea, R.C. Fierascu, R.M. Ion, Antioxidant Properties of Biohybrids Based on Liposomes and Sage Silver Nanoparticles, *Journal of Nanoscience and Nanotechnology*, 13, 2051 – 2060, 2013.

• R. Bunghez, **M. E. Barbinta-Patrascu**, N. Badea, S. M. Doncea, A. Popescu, R. M. Ion, <u>Antioxidant silver</u> <u>nanoparticles green synthesized using ornamental plants</u>, *Journal of Optoelectronics and Advanced Materials*, Vol. 14 (11-12), 1016 -1022, 2012.

- Bărbînță-Pătrașcu, M. E., Chimie pentru studenți note de curs (pdf)
- Parotă, A., Vasile, A. D., *Probleme de chimie aplicată*, vol. 1, Editura Tehnică, București, 1988.
- Arsene, P., Popescu, Şt., *Chimie și probleme de chimie organică*, Editura Tehnică, București, 1979.
- Berger, D., Organic Chemistry Laboratory Manual, 157 pages, 2010.
- Tennessee End of Course Practice Test for Chemistry, Tennessee Department of Education Web site, USA,

2013.

https://edu.rsc.org/download?ac=15044

https://handling-solutions.eppendorf.com/liquid-handling/sustainability/detailview/news/bioplastic-in-the-lab/

http://stiintasiinginerie.ro/wp-content/uploads/2014/01/68-TENDIN%C5%A2E-%C3%8EN-PRODUCEREA.pdf

https://www.green-report.ro/plastic-biodegradabil-obtinut-din-tulpini-de-patrunjel-si-spanac/

http://chemistry.ucdavis.edu/undergraduate/chemistry_2_series.html

http://www.crcnetbase.com/isbn/9781439840771

http://www.bluffton.edu/~bergerd/classes/cem221/handouts/labmanual.pdf

http://chemistry.harvard.edu/files/chemistry/files/2012 1 9 safetymanual1.pdf

http://www.acs.org/content/acs/en/greenchemistry/students-educators/textbooks.html

http://www.chem.uiuc.edu/weborganic/organictutorials.htm

http://www.learnchem.net/practice/

https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/Questions/problems/indexam.htm

http://tennessee.gov/education/assessment/sec_samplers.shtml

http://www.tn.gov/education/assessment/eoc/tst_eoc_chem_pt.pdf

http://chemistrysky.com/Practice%20Problems.html

http://www.regentsprep.org/regents/core/questions/topics.cfm?Course=CHEM

http://antoine.frostburg.edu/chem/senese/101/tutorials/

http://antoine.frostburg.edu/chem/senese/101/measurement/sigfig-quiz.shtml
https://www.khanacademy.org/science/chemistry/chemical-reactions-stoich	iome/balancing-chemical-equa	ations/e/		
balancing chemical equations				
http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html				
http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/chemcon.html#c1				
http://chemistry.ucdavis.edu/undergraduate/chemistry_2_series.html				
http://depts.washington.edu/chemcrs/bulkdisk/chem155A_win04/info_Lab	<u>Manual.pdf</u>			
http://chemistry.harvard.edu/files/chemistry/files/2012_1_9_safetymanual1	.pdf			
http://www.homepages.dsu.edu/bleilr/npmanual.pdf				
http://www.sciencegeek.net/				
http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-technique	es-january-iap-2012/labs/			
MIT5 301IAP12 comp manual.pdf				
http://chemistry.ucdavis.edu/undergraduate/chemistry_2_series.html				
http://www.crcnetbase.com/isbn/9781439840771				
http://www.bluffton.edu/~bergerd/classes/cem221/handouts/labmanual.pdf				
http://chemistry.harvard.edu/files/chemistry/files/2012_1_9_safetymanual1.pdf				
http://www.acs.org/content/acs/en/greenchemistry/students-educators/textbe	<u>ooks.html</u>			
http://www.chem.uiuc.edu/weborganic/organictutorials.htm				
http://www.learnchem.net/practice/				
https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/Questions/problems/indexam.htm				
8.4. Project	Teaching and learning	Obconvotions		
techniques				
Bibliography:				

This course unit aims at developing specific theoretical and practical competences and abilities in the field of General Chemistry, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania (Babes-Bolyai University, Cluj-Napoca) or from abroad (University of Coimbra; Rutgers University; University of Southampton; University of Cambridge). The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research in Physics – e.g. the National R&D Institute for Materials Physics, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in
		methods	final mark
10.4. Lecture	- coherence and clarity of exposition	Written test	60%
	- correct use of equations/and theories		
	- ability to indicate/analyse specific		
	examples		
10.5.1. Tutorial			
10.5.2. Practical	- ability to perform specific	Lab reports; practical	40%
	experiments	evaluation	
	- ability to present and discuss the		
	results		
	- ability to use specific problem		
	solving methods		
	- ability to analyse the results		
10.5.3. Project			
10 C Minimal us quinter ante fo	wassing the surger		

10.6. Minimal requirements for passing the exam

Attendance at least 50% of the number of lectures and compulsory attendance at all laboratory sessions.

Completion of all work and laboratory reports.

Correct solution for the subjects indicated to obtain score 5 at the final colloquium.

Date 27.10.2021	Teacher's name and signature Assoc.Prof. dr. eng. Marcela-Elisabeta Bărbînță-Pătrașcu	Practicals/Tutorials instructor(s) name(s) and signature(s) Assoc.Prof. dr. eng. Marcela-Elisabeta Bărbînță-Pătrașcu
Date of approval	Head of	Department

DFC.201F.EN Parallel computer architecture and programming

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Semiconduct	or physic	CS				
2.2. Teacher Prof.dr. Lucian Ion								
2.3. Tutorials/Practicals instructor(s)			Asist.dr. Geanina	a Chiro)șca			
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content ¹⁾	DS
	2		II	evaluation	E	Classification	Tupo ²⁾	DEac
						of course unit	Type	Drac

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	-	Practicals	2
3.2. Total hours per semester	56	distribution:	Lectures	28	Tutorials	-	Practicals	28
3.3 Distribution of estimated ti	ime for s	tudy						hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 15						15		
3.3.2. Research in library, study of electronic resources, field research						10		
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks						15		
3.3.4. Examination 4						4		
3.3.5. Other activities -						-		
3.4. Total hours of individual study 40								
3.5. Total hours per semester 100								
3.6. ECTS 4								

4. Prerequisites (if necessary)

4.1. curriculum	Courses: Computer Programming (C/C++)/
4.2. competencies	Knowledge of basic numerical techniques and methods

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (videoprojector, PC)
5.2. for practicals/tutorials/projects	Laboratory with specific infrastructure (networked computing systems)

6. Specific competences acquired

Professional	Creative application of the acquired knowledge in order to understand and to modeling physical
competencies	processes and phenomena;
	Processing and analysis of experimental data and use / development of specific software tools;
	Development and use of computer applications and virtual instrumentation to solve various physics
	problems;
	Communication and analysis of scientific information in physics
	Using specific software packages for data analysis and processing

Transversal	Efficient use of information sources and communication and training resources in an international
competencies	language
	Accomplishing professional tasks in an efficient and responsible manner by abiding to legislation
	and specific ethical and deontological rules, under supervised assistance

7. Course objectives

Knowledge of the architecture of parallel computing systems and the main
techniques of parallel programming
Knowledge of the characteristics of parallel computing architectures
Knowledge of the general characteristics of parallel computing models
Knowledge of MPI programming techniques
Knowledge of OpenMP programming techniques
Forming a creative way of thinking, essential for solving practical problems.

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations	
Concepts and fundamental elements. Classification of	Systematic exposition - lecture.	6 hours	
parallel computing architectures.	Examples	o nouis	
General characteristics of parallel computing models.	Systematic exposition - lecture.	1 hours	
Performance indicators.	Examples	4 110013	
The MPI standard. MPI programming techniques.	Systematic exposition - lecture.	10 hours	
	Examples	10 110015	
OpenMP programming techniques	MP programming techniques Systematic exposition - lecture.		
	Examples	0 110013	

Bibliography:

- Michael J. Quinn, Parallel Programming in C with MPI and OpenMP (McGraw-Hill, New York, USA, 2003).
- T. Rauber, G. Runger, Parallel Programming for multicore and cluster systems (Springer-Verlag, Berlin,
- Germany, 2010).

• W. Gropp, E. Lusk, A. Skjellum, Using MPI: portable parallel programming with the Message-Passing Interface (MIT Press, Cambridge, USA, 2014).

 L. Ion, Note de curs (pdf) 		
8.2. Tutorials	Teaching and learning techniques	Observations

Bibliography:

8.3. Practicals	Teaching and learning techniques	Observations
Function libraries for implementing simple process communication between processes	Guided practical activity	5 hours
Functions for managing the MPI environment. One-to- one communication operations	Guided practical activity	3 hours
Groups and communicators in the MPI environment. Virtual process topologies	Guided practical activity	6 hours
Derived data types. One-way communication and synchronization.	Guided practical activity	5 hours
Dynamic process creation and management. Parallel I / O operations.	Guided practical activity	3 hours
Threaded programming. The OpenMP standard	Guided practical activity	6 hours
D'hlt - man han		

Bibliography:

• G.A. Nemneş, T.L. Mitran, A. Nicolaev, L. Ion, *Aplicații MPI pentru sisteme de calcul paralel – îndrumător de laborator* (Editura Universității din București, București, 2015).

Michael J. Quinn, *Parallel Programming in C with MPI and OpenMP* (McGraw-Hill, New York, USA, 2003).
 W. Gropp, E. Lusk, A. Skjellum, Using MPI: portable parallel programming with the Message-Passing Interface (MIT Press, Cambridge, USA, 2014).

8.4. Project Not Applicable	Teaching and learning techniques	Observations

Bibliography:

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of the course is in line with the content of similar courses taught at universities in the country (West University of Timisoara) and abroad (University of Groningen, Netherlands, Technical University Wien, Austria, etc.), providing students with the training of skills and programming skills. parallel, skills and abilities of interest to companies and research institutes active in the development of MPI applications, including for modeling complex physical phenomena and processes.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	The correct use of the studied programming models and techniques; Capacity of exemplification; Capacity to apply the acquired knowledge to problem solving.	Written exam	60%
10.5.1. Tutorial			
10.5.2. Practical	Knowledge of parallel programming techniques and parallel computing infrastructure; Ability to exemplify;	Lab colloquium	40%
10.5.3. Project	Not applicable	Not applicable	Not applicable

10.6. Minimal requirements for passing the exam

Mandatory attendance at all application activities (laboratory).

Correctly solve the topics indicated to obtain a score of 5 on all topics, part of the assessment along the way.

Correctly solve the subjects indicated to obtain a score of 5 in the final exam (MPI communication operations). Requirements for getting mark 10 (10 points scale)

Skills, well-argued knowledge

Demonstrated ability to analyze problems, solve all topics correctly

Date 05.11.2021	Teacher's signature Prof.dr. Lucian Ion	Practicals/Tutorials instructor's signature Conf.dr. George Alexandru Nemneş
Date of approval		Head of Department
11.11.2021		Conf.dr. Adrian Radu

DFC.202F.EN Methods for data analysis and data mining

1. Study program	
1.1. University	University of Bucharest
0 1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics Informatics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Methods for a	Methods for data analysis and data mining					
2.2. Lecturer					Prof. Dr. Ana-Nicoleta Bondar			
2.3. Tutorials/Practicals	s instru	nstructor(s)		Prof. Dr. Ana-Nicoleta Bondar			_	
2.4. Year of study		2.5. Semester		2.6. Type of		2.7. Type of	Content 1)	DC
	2		II	evaluation		course unit	Type ²⁾	DFac

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	-	Practicals	1	Project	1
3.2. Total hours per	56	distribution	Lectures	28	Tutorials	_	Practicals	14	Project	14
semester	50	distribution.	Lectures	20	Tutoriuis		1 Iucticuis	14	riojeci	14
3.3 Distribution of estimat	ed tim	e for study	•				•			hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					10					
3.3.2. Research in library, study of electronic resources, field research						10				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks					20					
3.3.4. Examination 4					4					
3.3.5. Other activities										
3.4. Total hours of individual study 40										
3.5. Total hours per semest	ter			1	100]				

4. Prerequisites (if necessary)

3.6. ECTS

4. I I CI CY uisites (II liet	costi y)
4.1. curriculum	Physics, Bachelor
4.2. competences	Classical Mechanics

4

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for practicals/tutorials/projects	Desktop computer or personal laptop

6. Specific competences acquired

Professional competences	Working with data sets, computer programming, scientific discussion in English
Transversal competences	Scientific communication in English

7. Course objectives

3	
7.1. General objective	Learn modern methods for data analysis and data mining in physics
7.2. Specific objectives	Hands-on experience with modern software used for data analyses in physics

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations		
Introduction in modern methods in computational	Presentation. Examples.	2 hours		
physics. Applications from quantum mechanics.	Interactive discussion			
Applications from classical mechanics				
Introduction in numerical simulations. Additive force	Presentation. Examples.	2 hours		
fields; cross-terms, polarization	Interactive discussion			
Numerical simulations of liquids. Structure of data from	Presentation. Examples.	2 hours		
atomistic simulations. Example 1: Simulations of	Interactive discussion			
aqueous solutions				
Intrinsically disordered proteins as models of charged	Presentation. Examples.	2 hours		
polymers in aqueous solution.	Interactive discussion			
Statistical analyses of molecular dynamics data. Time	Presentation. Examples.	4 hours		
correlation functions. Potential of mean force. Data	Interactive discussion			
clustering algorithms				
Applications of force fields to descriptions of charged	Presentation. Examples.	4 hours		

polymers in aqueous solutions	Interactive discussion	
Algorithms and methodologies to derive force fields.	Presentation. Examples.	2 hours
The Seminaris method. Potential energy scans. Normal	Interactive discussion	
mode matching		
Graph theory, part 1: Introduction, Definitions	Presentation. Examples.	2 hours
	Interactive discussion	
Graph theory, part 1: Centrality measures, transition	Presentation. Examples.	4 hours
matrices	Interactive discussion	
Machine learning. Introduction, applications to force	Presentation. Examples.	4 hours
field development	Interactive discussion	
Bibliography:	•	•
1. Hans Kuhn, Principles of Physical Chemistry, Wiley-In	terscience 2009	
2. Daniel Zuckermann, Statistical Physics of Biomolecule	s, Taylor & Francis 2010	
3. Tildesley & Allen, Molecular Simulations of Liquids, O	xford University Press 2021	
8.2. Tutorials	Teaching and learning	Observations
	techniques	Observations
Introduction to Visual Molecular Dynamics	Practical computer work.	1 hours
	Interactive discussion	
Introduction to Avogadro	Practical computer work.	1 hours
	Interactive discussion	
Generate and visualize simple molecules – butane,	Practical computer work.	2 hours
water, dipeptides. Inspect geometry	Interactive discussion	
Generate and visualize water box with and without salt	Practical computer work.	2 hours
at specific concentration	Interactive discussion	
Generate and visualize intrinsically disordered peptide	Practical computer work.	2 hours
in water box at specific salt concentration	Interactive discussion	
Analyze a molecular dynamics trajectory of aqueous	Practical computer work.	2 hours
solution. Compute and interpret radial distribution	Interactive discussion	
function.		
Analyze a molecular dynamics trajectory of intrinsically	Practical computer work.	2 hours
disordered peptide in aqueous solution. Radius of	Interactive discussion	
gyration.		
Compute time series, histograms, and potential of mean	Practical computer work.	2 hours
force for data sets from numerical simulations	Interactive discussion	
Analyze vibrational modes of butane	Practical computer work.	2 hours
	Interactive discussion	
Introduction to graphical user interfaces for graph-based	Practical computer work.	2 hours
analyses: Bridge and C-Graphs	Interactive discussion	
Use graph-based analyses to analyze dynamics of an	Practical computer work.	2 hours
intrinsically disordered peptide.	Interactive discussion	
Bibliography:		

1. Tuturial for Visual Molecular Dynamics: https://www.ks.uiuc.edu/Training/Tutorials/vmd/tutorial-html

2. How to use Avogadro: https://avogadro.cc/docs/getting-started/drawing-molecules

3. User's Manual for C-Graphs: Bertalan, Lesca, Schertler & Bondar, Journal of Chemical Information and Modeling 2021, doi: 10.101/acs.jcim.1c00827

8.3. Practicals	Teaching and learning techniques	Observations
Bibliography:		

8.4. Project	Teaching and learning techniques	Observations
Write 10-page summary of practical computer work.	Individual practical computer	8 hours
	work	
Bibliography:		

Knowledge of methods of data analysis and numerical physics is essential to tackle modern challenges in physics. An example of curriculum that includes numerical simulation methods for physics students is from the University of York, UK:

https://www.york.ac.uk/media/physics/pdfs/2021%20Entry_%20Physics-openday-brochure.pdf

10.	Assessment
-----	------------

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	Ability to discuss theory concepts from the lecture	40%	
10.5.1. Tutorial	Completion of all tasks from the tutorial.	Completion of all tasks during the semester. Ability to discuss tasks	20%
10.5.2. Practical	-	-	-
10.5.3. Project	Ability to complete individual study	Deliver summary of all practical tasks. Ability to interpret data	20%

10.6. Minimal requirements for passing the exam

Minimum 50% of lecture hours must be attended. All tutorial hours and tasks are compulsory. Deliver project assignment consisting of 10 page summary of all computer work.

Requirements for getting mark 10 (10 points scale)

Skills, well-argued knowledge

Demonstrated ability to analyze phenomena and processes

Date Teacher's name and signature 8.11.2021 Prof. Dr. Ana-Nicoleta Bondar Date of approval 11.11.2021

Practicals/Tutorials instructor(s) name(s) and signature(s) Prof. Dr. Ana-Nicoleta Bondar

Head of Department Conf.univ.dr. Adrian Radu

DFC.203F.EN Introduction to radioastronomy

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Introduction	Introduction to radioastronomy					
2.2. Teacher			Prof. dr. Alina Badescu, dr. Valeriu Tudose					
2.3. Tutorials/Practicals	s instru	ctor(s) Prof. dr. Alina Badescu, dr. Valeriu Tudose				_		
2.4. Year of study		2.5. Semester		2.6. Type of		2.7. Type of	Content 1)	DS
	II		Ι	evaluation	E	course unit	Type ²⁾	DEc
							1,16	

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	2	distribution:	Lectures	1	Tutorials	-	Practicals	1	Project	-	
-----------------------------------	---	---------------	----------	---	-----------	---	------------	---	---------	---	--

3.2. Total hours per semester	28	distribution:	Lectures	14	Tutorials	-	Practicals	14	Project	-
3.3 Distribution of estimated time for study ho								hours		
3.3.1. Learning by using o	ne's o	wn course notes	, manuals, l	lecture	notes, bibliog	grap	ohy			12
3.3.2. Research in library, study of electronic resources, field research 3						3				
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks3						3				
3.3.4. Examination 4						4				
3.3.5. Other activities										Х
3.4. Total hours of individu	ual stu	ıdy			18					
3.5. Total hours per semes	ter			[50					
3.6. ECTS					2					

4. Prerequisites (if necessary)

<u> </u>	
4.1. curriculum	-
4.2. competences	-

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Real and complex analysis; Electricity and magnetism; Electrodynamics
5.2. for practicals/tutorials/projects	General knowledge of waves, vectorial calculus, statistics

6. Specific competences acquired

Professional competences	Understanding phenomena and physical processes pertaining to radioastronomy in the context of the cosmic objects under study and the instruments used. Familiarity with the basic notions in the field which will assure a solid base for further studies in astrophysics and engineering.
Transversal competences	Methodical and objective analysis of the issues, identifying elements for which known solutions exist.

7. Course objectives

7.1. General objective	The course offers a fundamental introduction in radioastronomy and the
	measurement techniques employed for the detection of radiation from cosmic
	objects.
7.2. Specific objectives	The components and functioning of a radiotelescope will be discussed. The
	concept of interferometry will be presented. Elements of electromagnetic waves
	propagation in extraterrestrial media will be introduced. The main radio emitting
	cosmic objects and the associated relevant physical processes will be presented.

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
1. Radioastronomy	On-line or in person	1 h
1.1. Introduction		
1.2. Radiotelescopes		
1.3. Radioastronomy and implications in		
science		
1.4. The atmosphere. Windows for radio waves		
2. Fundamentals		1 h
2.1. The electromagnetic spectrum		
2.2. Radiative transfer		
2.2.1. Emission		
2.2.2. Absorption		
2.3. The radiative transfer equation		
3. Propagation and properties of radio waves		1.5 h
3.1. Propagation in various media		
3.2. Reference frames		
3.3. Polarization. Stokes parameters		
3.4. Faraday rotation		
4. Detectors and signal processing		3 h

4.1. Bolometer4.2. Radiometer4.3. Radiotelescope4.4. Next generation of radioastronomical	
4.2. Radiofileter 4.3. Radiotelescope 4.4. Next generation of radioastronomical	
4.3. Radiotelescope 4.4. Next generation of radioastronomical	
4.4. Next generation of radioastronomical	
detectors	
4.5. Signal processing	
5. Antenas	1.5 h
5.1. Fundamentals	
5.2. Geometry	
5.3. Detection of partially polarized waves	
5.4. Antenna temperature	
5.5. Observing methods	
5.6. Antenna calibration	
6 Radio interferometry	1 h
7 Radio amission mechanisms	25h
7.1 Bromssterahlung	2.5 11
7.1. Definissualing	
7.2. Ivon-unennai raulation. Synchrotron.	
7.3. Inverse Compton scattering	
8. Radio emitting objects	2.5 n
8.1. Plasma clouds	
8.2. Atomic neutral hydrogen	
8.3. Molecular clouds	
8.4. Planets and stars	
8.5. Supernovae	
8.6. Radiogalaxies	
8.7. Pulsars	
8.8. Cosmic microwave background	
8.9. Masers	
Bibliography:	
1. Badescu A Introducere in Radioastronomie. MatrixRom. 2011	
2 Rybicki G B Lightman A P - Radiative Processes in Astrophysics Wiley-VCH 1991	
3 Wilson T. Rohlfs K. Huettemeister S Tools of Radio Astronomy Springer 6th ed. 2014	l
4 Longair M S - High Energy Actrophysics (2 vol.) CUD 1994	•
- Longan M.D High Energy Hstopphysics (2 vol.), Col., 1994	
$\mathbf{r} = \mathbf{r} + $	ac) Springer 2018
5. Wilson 1., Rollins K., Huelemeister S 100is of Radio Astronomy (Problems and Joarning	ns), Springer, 2018
8.2. Tutorials Teaching and learning	ns), Springer, 2018 Observations
8.2. Tutorials Teaching and learning techniques	ns), Springer, 2018 Observations
8.2. Tutorials Teaching and learning techniques	ns), Springer, 2018 Observations
S. Wilson I., Rollins K., Huetemeister S Tools of Radio Astronomy (Problems and Solution Solution) 8.2. Tutorials Teaching and learning techniques Bibliography:	ns), Springer, 2018 Observations
8.2. Tutorials Teaching and learning techniques Bibliography: Image: Comparison of the comparison of th	ns), Springer, 2018 Observations
S. Wilson I., Rollins K., Hueteliheister S Tools of Radio Astronomy (Problems and Solution Solution) 8.2. Tutorials Teaching and learning techniques Bibliography:	ns), Springer, 2018 Observations
S. Wilson I., Rollins K., Hueteliheister S Tools of Radio Astronomy (Problems and Solution Solution) 8.2. Tutorials Teaching and learning techniques Bibliography: Teaching and learning techniques 8.3. Practicals Teaching and learning techniques	ns), Springer, 2018 Observations Observations
S. Wilson I., Roms K., Huttelmeister S Tools of Radio Astronomy (Problems and Solution Solution) 8.2. Tutorials Teaching and learning techniques Bibliography: Image: Teaching and learning techniques 8.3. Practicals Teaching and learning techniques 1. The radiative transfer equation. Brightness On-line or in person.	ns), Springer, 2018 Observations Observations 2 h
S. Wilson I., Rollins K., Huetelineister S Tools of Radio Astronomy (Problems and Solution Solution) 8.2. Tutorials Teaching and learning techniques Bibliography: Image: Solution Solutin Solutin Solution Solution Solution Solutin Solution S	ns), Springer, 2018 Observations Observations 2 h
S. Wilson I., Roms K., Huttelineister S Tools of Radio Astronomy (Problems and Solution and Solutina and Solutina and Solution and Solution and Solution	ns), Springer, 2018 Observations Observations 2 h 2 h
S. Wilson I., Roms K., Hutelineister S Tools of Radio Astronomy (Problems and Solution and Solution and Solution and Solution techniques 8.2. Tutorials Teaching and learning techniques Bibliography: Teaching and learning techniques 8.3. Practicals Teaching and learning techniques 1. The radiative transfer equation. Brightness temperature On-line or in person. 2. Propagation of electromagnetic waves. Faraday rotation Image: Solution of Solution	ns), Springer, 2018 Observations Observations 2 h 2 h
S. Wilson I., Rollins K., Hutelineister S Tools of Radio Astronomy (Problems and Solution Solution Solution) 8.2. Tutorials Teaching and learning techniques Bibliography: Image: Solution Solutin Solution Solution Solution Solution Solution Solution Solution	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h
S. Wilson I., Roms K., Hutelineister S Tools of Radio Astronomy (Problems and Solution Science) 8.2. Tutorials Teaching and learning techniques Bibliography: Image: Science of	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h
S. Wilson I., Roms K., Hutelineister S Tools of Radio Astronomy (Problems and Solution 8.2. Tutorials Teaching and learning techniques Bibliography:	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h 2 h 2 h 2 h
S. Wilson I., Rollins K., Hutelineister S Tools of Radio Astronomy (Problems and Solution 8.2. Tutorials Teaching and learning techniques Bibliography:	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h
S. Wilson I., Roms K., Hutelineister S Tools of Radio Astronomy (Problems and Solution 8.2. Tutorials Teaching and learning techniques Bibliography:	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h
S. Wilson I., Roms K., Hutelineister S Tools of Radio Astronomy (Problems and Solution 8.2. Tutorials Teaching and learning techniques Bibliography:	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h
3. Wilson F., Roms K., Hutefiniester S Tools of Radio Astronomy (Problems and Solution 8.2. Tutorials Teaching and learning techniques Bibliography:	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h
S. Wilson T., Romits R., Huetemeister S Tools of Radio Astronomy (Problems and Solution 8.2. Tutorials Teaching and learning techniques Bibliography: Teaching and learning techniques 1. The radiative transfer equation. Brightness On-line or in person. temperature On-line or in person. 2. Propagation of electromagnetic waves. Faraday rotation Solution 3. Detectors. Thermal noise 4. Antennas 5. Radio emission mechanisms 6. Radio emistion mechanisms 6. Radio emisting objects 7. Final report Bibliography: 1. Badescu A Introducere in Radioastronomie, MatrixRom, 2011 2. Producting A. P. Dadiative Dreasers in Astronomic Willey WCU 1001	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h
S. Wilsoli L, Rollis K., Huteliheister S Tools of Radio Astronomy (Problems and Solution 8.2. Tutorials Teaching and learning techniques Bibliography: Image: Solution of Solutingenet Solution of Solution of Solution of Sol	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h
S. Wilson I., Rollis K., Huttenleister S Tools of Radio Astronomy (Problems and Solution 8.2. Tutorials Teaching and learning techniques Bibliography: Teaching and learning techniques Bibliography: Teaching and learning techniques 1. The radiative transfer equation. Brightness temperature On-line or in person. 2. Propagation of electromagnetic waves. Faraday rotation Solution 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h
S. Wilson I., Rollis K., Huteleneister S Tools of Radio Astronomy (Problems and Solution 8.2. Tutorials Teaching and learning techniques Bibliography: Teaching and learning techniques Bibliography: Teaching and learning techniques 1. The radiative transfer equation. Brightness temperature On-line or in person. 2. Propagation of electromagnetic waves. Faraday rotation Solution 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h
5. Witsoli F., Rollis K., Huetenleister S Tools of Radio Astronomy (Problems and Solution 8.2. Tutorials Teaching and learning techniques Bibliography: Image: Teaching and learning techniques 8.3. Practicals Teaching and learning techniques 1. The radiative transfer equation. Brightness temperature On-line or in person. 2. Propagation of electromagnetic waves. Faraday rotation Station of electromagnetic waves. Faraday 3. Detectors. Thermal noise 4. Antennas 5. Radio emission mechanisms 6. Radio emitting objects 7. Final report Bibliography: 1. Badescu A Introducere in Radioastronomie, MatrixRom, 2011 2. Rybicki G.B., Lightman A.P Radiative Processes in Astrophysics, Wiley-VCH, 1991 3. Wilson T., Rohlfs K., Huettemeister S Tools of Radio Astronomy, Springer, 6th ed. 2014 4. Longair M.S High Energy Astrophysics (2 vol.), CUP, 1994 5. Wilson T., Rohlfs K., Huetemeister S Tools of Radio Astronomy (Problems and Solution Problems and Soluti	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h
S. Wilson I., Rollits K., Huteleneister S Tools of Radio Astronomy (Problems and Solution 8.2. Tutorials Teaching and learning techniques Bibliography: Teaching and learning techniques 8.3. Practicals Teaching and learning techniques 1. The radiative transfer equation. Brightness temperature On-line or in person. 2. Propagation of electromagnetic waves. Faraday rotation 3. Detectors. Thermal noise 4. Antennas 5. Radio emission mechanisms 6. Radio emission mechanisms 6. Radio emitting objects 7. Final report Bibliography: 1. Badescu A Introducere in Radioastronomie, MatrixRom, 2011 2. Rybicki G.B., Lightman A.P Radiative Processes in Astrophysics, Wiley-VCH, 1991 3. Wilson T., Rohlfs K., Huettemeister S Tools of Radio Astronomy, Springer, 6th ed. 2014 4. Longair M.S High Energy Astrophysics (2 vol.), CUP, 1994 5. Wilson T., Rohlfs K., Huetemeister S Tools of Radio Astronomy (Problems and Solution 8.4. Project	ns), Springer, 2018 Observations Observations 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h

Bibliography:	

Astrophysics has evolved continuously in the last half century. It is now a multidisciplinary field encompassing atomic and high-energy physics, general relativity, electrical engineering, information technology, chemistry, telecommunications, optics, complex mathematics, material sciences, etc. The extreme distances in the Universe, the very weak signals, as well as the high volume of astrophysical data lead to the need of more advanced detectors that push the current technology to its limits. The interaction between the requirements of astrophysics and the technological advances has a significant impact in many other fields, as diverse as e.g. national security and household appliances.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark				
10.4. Lecture	Assimilation of fundamental	Continuous assessment	50%				
	theoretical notionsContinuous						
	assessment						
10.5.1. Tutorial	Applying theory to practice	Final raport	50 %				
10.5.2. Practical							
10.5.3. Project							
10.6. Minimal requirements for passing the exam							
Course attendance: minimum 50 % of the time							
Tutorial attendance: tutorials are compulsory							

Date 4.10.2021 Teacher's name and signature Prof. dr. Alina Badescu, dr. Valeriu Tudose

Practicals/Tutorials instructor(s) name(s) and signature(s) Prof. dr. Alina Badescu, dr. Valeriu Tudose Head of Department Prof.dr. Alexandru Jipa

Date of approval 11.11.2021

DFC.204F.EN Physics of deformable media

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Departmane of Structure of Matter, Physics of the Earth and Atmosphere, Astrophysics
1.4.Field of study	Physics
1.5.Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title	Physics of de	eformab	le media					
2.2. Teacher				Cheche Ovidius Tiberius				
2.3. Seminars/Laboratory instructor(s)			Cheche Ovidius	Cheche Ovidius Tiberius				
2.4. Year of study		2.5. Semester		2.6. Type of		2.7.	Content 1)	DS
	2		II	evaluation	Е	Classification of course unit	Type ²⁾	DF

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time	4	distribution:	Lectures	2	Seminars		Laboratory	Project	
(hours/semester) 3.1.						2	works		
Hours per week in									

curriculum									
3.2. Total hours per semester	56	distribution:	Lectures	28	Seminars	28	Laboratory works	Project	
3.3 Distribution of estimat	ed tim	ne for study							hours
3.3.1. Learning by using o	ne's o	wn course notes	s, manuals, l	lecture	notes, bibli	ograp	hy		5
3.3.2. Research in library, study of electronic resources, field research						5			
3.3.3. Preparation for laboratory works/seminars/projects/reports/homework						5			
3.3.4. Examination					4				
3.3.5. Other activities									
3.4. Total hours of individu	ual stu	ıdy		1	15				
3.5. Total hours per semes	ter			7	75				

3.6. ECTS

4. Prerequisites (if necessary)

1	
4.1. curriculum	Courses: Classical Mechanics, Real Analysis, Algebra, Geometry and Differential Equations,
	Equations of Mathematical Physics.
4.2. competencies	Processing of Physical Data and Numerical Methods

3

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Interactive Multimedia Board
5.2. for laboratory	Sominar Classroom
works/seminars/projects	

6. Specific competences acquired

Professional	Ability to apply the continuum mechanics knowledge to explain the elastic properties of solid bodies.				
competencies	Ability to apply the mathematical knowledge in modeling the continuous media.				
	Ability to use the specific notions of elasticity.				
	Ability to solve textbook problems.				
Transversal	Efficient use of the scientific resources of physics.				
competencies	Efficiently and responsibly solving of professional tasks by obeying the legal laws, ethics and				
	deontology of science, being supervised by qualified personnel.				

7. Course objectives

7.1. General objective	Assimilation of knowledge in the field of elasticity, ability to solve elasticity
	problems.
7.2. Specific objectives	Developing the ability to infinitesimally model the elastic properties of
	continuous media.
	Learning from simple (Hooke's law) to complex (3D models for elasticity of
	solid bodies) by using the laws of classical mechanics and the theory of
	differential equations.
	Developing the ability to solve elasticity problems, as well as to formulate
	rigorous theoretical conclusions.
	Acquiring a deep theoretical understanding of the studied topic.

8. Contents

8.1. Lectures[chapters]	Teaching techniques	Observations
Vectors, matrices, and tensors.	Lecture. Examples.	2 hours
Second order tensors in Cartesian and curvilinear	_	
orthogonal coordinates.		
Strain and Stress.	Lecture. Examples.	8 hours
Displacement vector, rotation strain tensor. Change of		
basis for the strain tensor.		
Vector and stress tensor. Change of basis for the stress		
tensor.		

Stress distributions in radial compressed disk.		
Equilibrium equations in Cartesian, spherical, and		
cylindrical coordinates.		
Generalized Hooke's law. Fourth order tensor of		
compliance for an elastic solid. Young modulus, Poisson		
ratio.		
Types of elasticity problem as a function of boundary	Lecture. Examples.	3 hours
Conditions.		
Stress tensor method for given forces normally applied		
Displacement method for given volume forces and		
displacements at the body surface		
Electicity modele	Locturo Examples	11 hours
Eldsucity models.	Lecture. Examples.	11 nouis
beam Dayleigh Ditz method for the stress calculus		
Models for two-dimensional elastic surfaces, stress and		
strain methods. Polynomial Fourier's series and		
integral method solutions		
Three-dimensionale models for the elasticity properties		
study. Galerkin vector representation. Examples in		
micro-mechanics		
Flastic waves	Lecture Examples	4 hours
Elastic waves in isotropic continuous media and	Lecture: Examples.	+ nours
crystals. Vibrations of beams and two-dimensional		
surfaces.		
References:		
1. M.H. Sadd, Elasticity Theory, Applications, and Numer	ics, Academic Press, 2020.	
2. S.P. Timoshenko, J. M. Gere, Theory of elastic stability	McGraw-Hill International Book	Company , 1964.
3. R.K. Bansal, Strength of Materials, Laxmi Publication	LTD, New-Dehli, 2009.	F J J F
4. L. Landau, E. Lifshitz, Theory of Elasticity, Butterwort	h-Heinemann; 3rd edition 1986.	
5. Y.A. Amenzade. Theory of elasticity, Mir, 1979.		
8.2. Seminars	Teaching and learning	
	techniques	Observations
	techniques	Observations
Vector operators (gradient, divergence, curl, Laplace)	Interacting lectures.	Observations 3 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical,	Interacting lectures.	Observations 3 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical.	Interacting lectures.	Observations 3 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law.	Interacting lectures.	Observations 3 hours 2 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations.	Interacting lectures.	Observations 3 hours 2 hours 3 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical,	Interacting lectures. Interacting lectures. Interacting lectures.	Observations 3 hours 2 hours 3 hours 4 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed	Interacting lectures. Interacting lectures. Interacting lectures.	Observations 3 hours 2 hours 3 hours 4 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc.	Interacting lectures. Interacting lectures. Interacting lectures.	Observations 3 hours 2 hours 3 hours 4 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc. Shear stress. Deformations and uniaxial stress in elastic	Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures.	Observations 3 hours 2 hours 3 hours 4 hours 3 hour
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc. Shear stress. Deformations and uniaxial stress in elastic cylinders.	Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures.	Observations 3 hours 2 hours 3 hours 4 hours 3 hour
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc. Shear stress. Deformations and uniaxial stress in elastic cylinders. Elogation, strain energy due to self weight in cylindrical	Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures.	Observations 3 hours 2 hours 3 hours 4 hours 3 hour 3 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc. Shear stress. Deformations and uniaxial stress in elastic cylinders. Elogation, strain energy due to self weight in cylindrical bar. Torsion of a cylindrical and prismatic bar.	Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures.	Observations 3 hours 2 hours 3 hours 4 hours 3 hour 3 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc. Shear stress. Deformations and uniaxial stress in elastic cylinders. Elogation, strain energy due to self weight in cylindrical bar. Torsion of a cylindrical and prismatic bar. Rayleigh-Ritz method for stress calculus in elastic beam.	Interacting lectures.	Observations 3 hours 2 hours 3 hours 4 hours 3 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc. Shear stress. Deformations and uniaxial stress in elastic cylinders. Elogation, strain energy due to self weight in cylindrical bar. Torsion of a cylindrical and prismatic bar. Rayleigh-Ritz method for stress calculus in elastic beam. Strain-stress relation in spherical and cylindrical multi-	Interacting lectures.	Observations 3 hours 2 hours 3 hours 4 hours 3 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc. Shear stress. Deformations and uniaxial stress in elastic cylinders. Elogation, strain energy due to self weight in cylindrical bar. Torsion of a cylindrical and prismatic bar. Rayleigh-Ritz method for stress calculus in elastic beam. Strain-stress relation in spherical and cylindrical multi- layer nanostructures.	Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures.	Observations 3 hours 2 hours 3 hours 4 hours 3 hour 3 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc. Shear stress. Deformations and uniaxial stress in elastic cylinders. Elogation, strain energy due to self weight in cylindrical bar. Torsion of a cylindrical and prismatic bar. Rayleigh-Ritz method for stress calculus in elastic beam. Strain-stress relation in spherical and cylindrical multi- layer nanostructures. Uniaxial elongation of a bar. Deflection of a beam	Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Analize critice. Exemple	Observations 3 hours 2 hours 3 hours 4 hours 3 hour 3 hours 3 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc. Shear stress. Deformations and uniaxial stress in elastic cylinders. Elogation, strain energy due to self weight in cylindrical bar. Torsion of a cylindrical and prismatic bar. Rayleigh-Ritz method for stress calculus in elastic beam. Strain-stress relation in spherical and cylindrical multi- layer nanostructures. Uniaxial elongation of a bar. Deflection of a beam under various types of deformating forces. In-plane	Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Analize critice. Exemple	Observations 3 hours 2 hours 3 hours 4 hours 3 hour 3 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc. Shear stress. Deformations and uniaxial stress in elastic cylinders. Elogation, strain energy due to self weight in cylindrical bar. Torsion of a cylindrical and prismatic bar. Rayleigh-Ritz method for stress calculus in elastic beam. Strain-stress relation in spherical and cylindrical multi- layer nanostructures. Uniaxial elongation of a bar. Deflection of a beam under various types of deformating forces. In-plane deformation of a rectangular plate.	Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Analize critice. Exemple	Observations 3 hours 2 hours 3 hours 4 hours 3 hours
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc. Shear stress. Deformations and uniaxial stress in elastic cylinders. Elogation, strain energy due to self weight in cylindrical bar. Torsion of a cylindrical and prismatic bar. Rayleigh-Ritz method for stress calculus in elastic beam. Strain-stress relation in spherical and cylindrical multi- layer nanostructures. Uniaxial elongation of a bar. Deflection of a beam under various types of deformating forces. In-plane deformation of a rectangular plate. Helicoydal spring.	Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Analize critice. Exemple Analize critice. Exemple	Observations 3 hours 2 hours 3 hours 4 hours 3 hours 1 hour
Vector operators (gradient, divergence, curl, Laplace) and second order tensors in polar coordinates, spherical, cylindrical. Generalized Hooke's law. Transformation of the second order tensors by rotations. Stress expression in polar coordinates, spherical, cylindrical. Stress distribution in a radially compressed disc. Shear stress. Deformations and uniaxial stress in elastic cylinders. Elogation, strain energy due to self weight in cylindrical bar. Torsion of a cylindrical and prismatic bar. Rayleigh-Ritz method for stress calculus in elastic beam. Strain-stress relation in spherical and cylindrical multi- layer nanostructures. Uniaxial elongation of a bar. Deflection of a beam under various types of deformating forces. In-plane deformation of a rectangular plate. Helicoydal spring. References:	Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Interacting lectures. Analize critice. Exemple Analize critice. Exemple	Observations 3 hours 2 hours 3 hours 4 hours 3 hours 1 hour

2. S.P. Timoshenko, J. M. Gere, Theory of elastic stability, McGraw-Hill International Book Company , 1964.

3. R.K. Bansal, Strength of Materials, Laxmi Publication LTD, New-Dehli, 2009.

4. Y.A. Amenzade. Theory of elasticity, Mir, 1979.

5. T.E. Pahomi, T.O. Cheche, Strain influence on optical absorption of giant semiconductor colloidal quantum dots, *Chemical Physics Letters* **612**, 33-38 (2014).

6.	"Optical Excitations of Colloidal Core-Shell Semiconductor Quantum Dots", autor: T.O. Cheche, in cartea: Colloids,
	ISBN 978-953-51-4919-4, Book edited by: Dr. Mohammed Muzibur Rahman, InTech, 2016. pagini: 155-174.

	inica mazioar rainnan, mreen, 2010	Pugnin, 100 17 1.
8.3. Laboratory works	Teaching and learning techniques	Observations
References:		
8.4. Project	Teaching and learning techniques	Observations
References:		

The content of the present teaching plan, which is in accordance with similar content provided at other national (Universitatea Babeş-Bolyai, Cluj Napoca, Universitatea "Alexandru Ioan Cuza" din Iași) and international universities (University of Groningen, Netherlands, Warwick University, UK, University of Tubingen, Germany, Technical University Wien, Austria, etc.), ensures formation of the skills useful to analyze physical phenomena specific to the continuous media, identify applications, capacities, and abilities of interest for companies and research institutes involved in the mechanics research.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	Clarity, coherence, and conciseness of presentation; Correct use of the physical models, mathematical equations, and algebra; Capacity to exemplify; Capacity of applying the knowledge to clearly formulate hypotheses for various mechanics problems of elasticity.	Exam-written test	70%
10.5.1. Seminar	Ability to solve textbook problems of elasticity.	Homework check	30%
10.5.2. Laboratory work			
10.5.3. Project			

Date
01.11.2021Teacher's name and signatu
Conf. dr. Tiberius Ovidius ChecheLaboratory/Seminar instructor(s)
name(s) and signature(s
Conf. dr. Tiberius Ovidius ChecheDate of approval
11.11.2021Head of Department
Prof.dr. Alexandru Jipa

DFC.301F.EN Astrophysics and planetology

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Astrophysics and planetology								
2.2. Teacher Prof. dr.					n Duliı	1		
2.3. Tutorials/Practicals instructor(s)			Prof. dr. Octavian Duliu					
2.4. Year of study		2.5. Semester	т	2.6. Type of	C	2.7. Type of	Content ¹⁾	DC
	111		1	evaluation	C	course unit	Type ²⁾	DFc

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	3	distribution:	Lectures	2	Tutorials	-	Practicals	1	Project	-
3.2. Total hours per semester	42	distribution:	Lectures	28	Tutorials	-	Practicals	14	Project	-
3.3 Distribution of estimated time for study hour								hours		
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 15								15		
3.3.2. Research in library, study of electronic resources, field research5								5		
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks9							9			
3.3.4. Examination 4								4		
3.3.5. Other activities										
3.4. Total hours of individual study 29										
3.5. Total hours per semester 75										
3.6. ECTS 3										

4. Prerequisites (if necessary)

4.1. curriculum	Mechanics, Thermodynamics, Electrodynamics, Atomic and Molecular Physics, Optics,
	Spectroscopy,
4.2. competences	Use of software packages for data analysis and processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Room with multimedia equipment (video projector)
5.2. for practicals/tutorials/projects	Room with multimedia equipment (video projector) + laboratory works

6. Specific competences acquired

Professional	1) Identify and properly use the main laws and principles of physics in a given context; identifying
competences	and using notions and laws for the comic space
	2) Solving physics problems under imposed conditions
	3) Creative application of the acquired knowledge in order to understand and model the processes and
	physical properties of the systems
	4) Communication and analysis of information of a didactic, scientific and popularization nature in
	the field of physics
	5) Use / development of specific software tools
Transversal	1) Efficient use of information sources and communication and training resources
competences	2) Carrying out professional tasks efficiently and responsibly in compliance with the legislation,
_	ethics and deontology specific to the field.
000000000000000000000000000000000000000	000000000000000000000000000000000000000

. J
ea on
ind
omic
nomena
ly
a ti

8. Contents		
8.1. Lectures [chapters]	Teaching techniques	Observations
Solar system. Composition. Planets and satellites.	Systematic exposition - lecture.	4 h
Comets, asteroids and cosmic dust. Genesis of the solar	Heuristic conversation. Critical	
system. The formation of the earth, the age of the oldest	analysis. Examples	
rocks. Newtonian dynamics of the solar system.		
Our galaxy (the Milky Way). Composition, structure.	Systematic exposition - lecture.	2 h
Dynamics of the galaxy. Types of galaxies. Training and	Examples	
characterization.		
	Systematic exposition - lecture.	4 h
The evolution of dynamic systems. Planetary dynamics.	Heuristic conversation.	
Stability and instability in multi-body systems. Ex.	Examples	
Saturn's rings.		41
The Origin of Elements in the Universe - Mendeleev s		4 fi
Light in astronomy, light cosmic dust interaction	Systematic expectition lecture	4 b
processes (scattering: polarization, abcorption	Houristic conversation Critical	4 11
fluorescence of Auger) Padio broadcast Padio	analysis Examples	
astronomy Radiative processes in astrophysics:	anarysis. Examples	
emission and absorption: braking radiation (cyclotronic		
synchrotronic): acceleration of particles in outer space:		
Stable isotopes of paleontological and geological	Systematic exposition - lecture.	2 h
importance: carbon isotopes (mantle, igneous rocks,	Heuristic conversation. Critical	
diamonds, organic matter, marine minerals,), stable	analysis. Examples	
isotopes of sulfur, stable isotopes of nitrogen, stable		
isotopes of chlorine and bromine; natural and artificial		
radioactivity; radioactive series; kinetics of isotopic		
chemistry; chemical, isotopic reactions, equilibria,		
isotopic separations.		
K-Ar and 40Ar / 39Ar dating method; Dating method	Systematic exposition - lecture.	2 h
Rb-Sr, Sm-Nd, Lu-Hf, Re-Os. Sr and Nd geochemistry	Examples	
in meteorites, terrestrial magmatites and sedimentary		
rocks. U-Pb, Th-Pb dating method. Isotope		
geochemistry Pb.		21
The U unbalanced series. 210Pb dating. Dating with	Systematic exposition - lecture.	2 h
14C of cosmogenic origin. He and Iritium: U-1n / He	Heuristic conversation.	
and Tritium-3He. Cosmogenic radionucides: 10Be,	Examples	
Apparatus and methods used in isotope applications:	Systematic expectition lecture	4 b
Mass spectrometer measured masses calculated masses	Examples	4 11
Thermoluminescence dating: cathodoluminescence:	Examples	
Paleomagnetism: Theories of the origin of the magnetic		
fields of the planets. Current applications of electronic		
paramagnetic resonance:		
Bibliography:		
A. Carrington, A.D.McLachlan, Introduction to magnetic i	resonance with application to chemis	stry and chemical physics,
Harper & Row, 1967		5 1 5 7
J.R. Bolton, J.A.Weil, Electron paramagnetic resonance :	elementary theory and practical aplic	ations, John Wiley &
Sons, Inc., Hoboken, New Jersey, 2007		-
C.P. Slichter, Principle of magnetic resonance, Springer Ve	erlag Berlin Heidelberg GmbH, 1978	
A. Abragam, B. Bleaney, Electron Paramagnetic Resonan	ce of Transition Ions, Oxford Univer	sity Press, 1970
M. Ikeya, New applications of electron spin resonance: Da	ating, Dosimetry and Microscopy, Wo	orld Scientific, 1993
A. Schweiger, G. Jeschke, Principles of Pulse Electron Par	ramagnetic Resonance, Oxford Unive	ersity Press, 2001
C.D. Negut, M. Cutrubinis, ESR Standard Methods for Det	tection of Irradiated Food, în: A. K. S	hukla (ed.) Electron Spin
Resonance in Food Science, Elsevier, Academic Press (20	17)	
U.G. Duliu, V. Bercu, ESR Investigation of the Free Radic	als in Irradiated Foods, în: A. K. Shu	kla (ed.) Electron Spin
Resonance in Food Science, Elsevier, Academic Press (20	1/)	when a tag and the Charles
(ad) Electron Magnetic Decenance Applications in Dece	or the provenance study of natural ca	roonales, In: A. K. Shukla
(eu.) Electron Magnetic Resonance - Applications in Physical A. Einstein Teorie relativității: Ed. Tehnica, 1057	ical Sciences and Biology, Elsevier, F	Academic Press (2019)
A. Emstein, reona relativitații, Ed. rennica, 195/		

Aliket Sule, A Problem Books in Astronomy and Astrophysics, Cygnus Pub. House 2014

J.Kleczek, Exercises in astronomy, D.Reidel Pybl. Comp. 1987

I. Albu, Gh. Vass, Astronomie, matematica, informatica. Programe de calcul, București 1985

S.Garlasu, C.Pop, S. Ionel, Introducere in analiza spectrala si de corelație, Ed. Facla 1982

B.W. Carrol, D.A. Ostlie, An introduction to Modern Astrophysics, Addison-Wesley, 1996

E. Toma, Introducere in astrofizica, Ed. Tehnica, 1980 A.

Sanielevici, Radioactivitate, Ed. Academiei, București, 1956

G. Văsaru, Izotopi stabili, Ed. Tehnică, Bucuresti 1965

A. Szabo, Ape şi gaze radioactive în R.S. România, Ed. Dacia, Cluj-Napoca, 1978

A. Berinde &Co, Culegere de probleme de fizică nucleară și aplicații, Ed. Tehnică, București, 1972

George Gamow, O planeta numita Pământ, Ed. Științifică, 1968 Cornelia Cristescu, Gabriela Oprescu, Magda Stavinschi, Cometa Halley, Ed. Științifica, 1985

C.Grasu, Al. Maftei, Ce știm despre Luna, Ed. Tehnica, 1989

V. Nadolschi, Asteroizi și comete, Ed. Albatros, 1971

J.C.Brandt, R.D.Chapman, Introduction to Comets, Cambridge Univ. Press, 1981

NASA SP-149, Interstelar grains, NASA - 1965

Ballai, et all, Plasma and Astrophysics: from laboratory to outer space, Bristis Council, Budapest, 2005

A.P. Dickin, Radiogenic Isotope Geology, Cambridege University Press, 2005, e-ISBN: 978-0-511-11544-8

G.R. Choppin et al. Radiochemistry and Nuclear Chemistry, Butterworth-Heinemann, 2002, ISBN: 978-0-7506-7463-8 Faure, G., 1986. Principles of Isotope Geology, John Wiley and Sons, 589 pp.

Neubauer, F., Bojar, A.-V., 2013. Origin of sediments during Cretaceous continent - continent collision in the Romanian Southern Carpathians: Preliminary constraints from 40Ar/39Ar single-grain dating of detrital white mica. Geologica Carpathica 64/5, 375-382.

Bojar, A.-V., Bojar, H.-P., 2013. The Cretaceous/Paleogene boundary in the East Carpathians, Romania: geochemical, mineralogical and calcareous nannofossils evidence. In: Bojar, A.-V., Melinte-Dobrinescu, M.C., Smit, J. (eds) Isotopic Studies in Cretaceous Research. Geological Society. London, Special Publications, 382, 105-122.

Constantin, S., Bojar, A.-V., Lundberg, J., Lauritzen, S.E., 2007. Holocene and Late Pleistocene climate record of a sub-Mediterranean continental environment, Poleva Cave (Southern Carpathians, Romania). Palaeogeography, Palaeoclimatology, Palaeoecology 243/3-4, 322-338.

J.R. Bolton, J.A.Weil, Electron paramagnetic resonance : elementary theory and practical aplications, John Wiley & Sons, Inc., Hoboken, New Jersey, 2007

M. Ikeya, New applications of electron spin resonance: Dating, Dosimetry and Microscopy, World Scientific, 1993 G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, (eds.) Quantitative EPR, Springer, 2010

A. Lund, M. Shiotani (eds.) Applications of EPR in Radiation Research, Springer, 2014

The Bundy first Stribtum (Cubi) rippincurons of Er it in Hudid	aon research, springer, zor i	
8.3. Practicals	Teaching and learning techniques	Observations
Conditiile paleoclimatice din timpul Cretacicului superior (cu exemplificare din Bazinul Hateg)	Guided practical activities	2 h
Calculation of absolute ages based on radiogenic isotopes	Guided practical activities	2 h
Calculation of temperature based on the composition of stable isotopes The formation of the earth, the age of the oldest rocks	Guided practical activities	2 h
K-Ar and 40Ar / 39Ar dating method.	Guided practical activities	2 h
U-Pb, Th-Pb dating method. Isotope geochemistry Pb. U. Unbalanced series. 210Pb dating.	Guided practical activities	2 h
Interstellar matter; cosmology; isotopy in astrophysics - the two images of the supernova explosion. Spectrum analysis.	Guided practical activities	2 h
Histria statuette - use of the X-ray attenuation coefficient Oklo natural reactor - Gabon - isotopic identification	Guided practical activities	2 h

Bibliography:

A. Carrington, A.D.McLachlan, Introduction to magnetic resonance with applicayion to chemistry and chemical physics, Harper & Row, 1967

J.R. Bolton, J.A.Weil, Electron paramagnetic resonance : elementary theory and practical aplications, John Wiley & Sons, Inc., Hoboken, New Jersey, 2007

C.P. Slichter, Principle of magnetic resonance, Springer Verlag Berlin Heidelberg GmbH, 1978

A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, 1970

M. Ikeya, New applications of electron spin resonance: Dating, Dosimetry and Microscopy, World Scientific, 1993 A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance, Oxford University Press, 2001 C.D. Negut, M. Cutrubinis, ESR Standard Methods for Detection of Irradiated Food, în: A. K. Shukla (ed.) Electron Spin Resonance in Food Science, Elsevier, Academic Press (2017) O.G. Duliu, V. Bercu, ESR Investigation of the Free Radicals in Irradiated Foods, în: A. K. Shukla (ed.) Electron Spin Resonance in Food Science, Elsevier, Academic Press (2017) O.G. Duliu, V. Bercu, D. Negut, Mn²⁺ EPR spectroscopy for the provenance study of natural carbonates, în: A. K. Shukla (ed.) Electron Magnetic Resonance - Applications in Physical Sciences and Biology, Elsevier, Academic Press (2019) A. Einstein, Teoria relativității, Ed. Tehnica, 1957 Aliket Sule, A Problem Books in Astronomy and Astrophysics, Cygnus Pub. House 2014 J.Kleczek, Exercises in astronomy, D.Reidel Pybl. Comp. 1987 I. Albu, Gh. Vass, Astronomie, matematica, informatica. Programe de calcul, București 1985 S.Garlasu, C.Pop, S. Ionel, Introducere in analiza spectrala si de corelație, Ed. Facla 1982 B.W. Carrol, D.A. Ostlie, An introduction to Modern Astrophysics, Addison-Wesley, 1996 E. Toma, Introducere in astrofizica, Ed. Tehnica, 1980 A. Sanielevici, Radioactivitate, Ed. Academiei, București, 1956 G. Văsaru, Izotopi stabili, Ed. Tehnică, Bucuresti 1965 A. Szabo, Ape și gaze radioactive în R.S. România, Ed. Dacia, Cluj-Napoca, 1978 A. Berinde &Co, Culegere de probleme de fizică nucleară și aplicații, Ed. Tehnică, București, 1972 George Gamow, O planeta numita Pământ, Ed. Științifică, 1968 Cornelia Cristescu, Gabriela Oprescu, Magda Stavinschi, Cometa Halley, Ed. Stiințifica, 1985 C.Grasu, Al. Maftei, Ce știm despre Luna, Ed. Tehnica, 1989 V. Nadolschi, Asteroizi și comete, Ed. Albatros, 1971 J.C.Brandt, R.D.Chapman, Introduction to Comets, Cambridge Univ. Press, 1981 NASA SP-149, Interstelar grains, NASA - 1965 Ballai, et all, Plasma and Astrophysics: from laboratory to outer space, Bristis Council, Budapest, 2005 A.P. Dickin, Radiogenic Isotope Geology, Cambridege University Press, 2005, e-ISBN: 978-0-511-11544-8 G.R. Choppin et al. Radiochemistry and Nuclear Chemistry, Butterworth-Heinemann, 2002, ISBN: 978-0-7506-7463-8 Faure, G., 1986. Principles of Isotope Geology, John Wiley and Sons, 589 pp. Neubauer, F., Bojar, A.-V., 2013. Origin of sediments during Cretaceous continent - continent collision in the Romanian Southern Carpathians: Preliminary constraints from 40Ar/39Ar single-grain dating of detrital white mica. Geologica Carpathica 64/5, 375-382. Bojar, A.-V., Bojar, H.-P., 2013. The Cretaceous/Paleogene boundary in the East Carpathians, Romania: geochemical, mineralogical and calcareous nannofossils evidence. In: Bojar, A.-V., Melinte-Dobrinescu, M.C., Smit, J. (eds) Isotopic Studies in Cretaceous Reserarch. Geological Society. London, Special Publications, 382, 105-122. Constantin, S., Bojar, A.-V., Lundberg, J., Lauritzen, S.E., 2007. Holocene and Late Pleistocene climate record of a sub-Mediterranean continental environment, Poleva Cave (Southern Carpathians, Romania). Palaeogeography, Palaeoclimatology, Palaeoecology 243/3-4, 322-338. J.R. Bolton, J.A.Weil, Electron paramagnetic resonance : elementary theory and practical aplications, John Wiley & Sons, Inc., Hoboken, New Jersey, 2007 M. Ikeva, New applications of electron spin resonance: Dating, Dosimetry and Microscopy, World Scientific, 1993 G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, (eds.) Quantitative EPR, Springer, 2010 A. Lund, M. Shiotani (eds.) Applications of EPR in Radiation Research, Springer, 2014 Teaching and learning 8.4. Project Observations techniques Bibliography:

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to identify the contents and choose the teaching / learning methods, the holders of the subject consulted the content of similar disciplines taught at universities in the country and abroad such as Swiss Federal Institute of Technology in Zurich (ETH Zurich), University of Padua, University of Southern California. The content of the discipline is in accordance with the requirements for employment in research institutes in physics and education.

10. Assessment

Activity type	10.1 Accessment criteria	10.2. Assessment	10.3. Weight in	
Activity type	10.1. Assessment criteria	methods	final mark	
10.4. Lecture	- Clarity, coherence and conciseness	Test	50%	
	of the presentation,			
	- Correct use of calculation models,			

	formulas and relationships; - Ability to exemplify;					
10.5.1. Tutorial						
10.5.2. Practical	- Individual activity	Test	50 %			
	- Knowledge and use of experimental					
	techniques; - Interpretation of results;					
10.5.3. Project						
10.6. Minimal requirements for	or passing the exam					
Course attendance: minimum 50 % of the time						
Tutorial attendance: tutorials are compulsory						
Tutoriai attenduiteer tutoriuis (

Date 15.10.2021	Teacher's name and signature Prof. dr. Octavian Duliu	Practicals/Tutorials instructor(s) name(s) and signature(s) Prof. dr. Octavian Duliu
Date of approval 11.11.2021	Р	Head of Department Prof.dr. Alexandru Jipa

DFC.302F.EN Experimental methods in astrophysics and planetology

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Physics
1.5. Course of study	Undergraduate/Bachelor of Science
1.6. Study program	Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title		Astrophysics	Astrophysics and planetology					
2.2. Teacher				Prof. dr. Octavia	n Duli	1		
2.3. Tutorials/Practicals instructor(s)			Prof. dr. Octavia	n Duli	1			
2.4. Year of study		2.5. Semester		2.6. Type of		2.7. Type of	Content ¹⁾	DC
	III		Ι	evaluation	C	course unit	Type ²⁾	DFc

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	3	distribution:	Lectures	2	Tutorials	-	Practicals	1	Project	-
3.2. Total hours per semester	42	distribution:	Lectures	28	Tutorials	-	Practicals	14	Project	-
3.3 Distribution of estimated time for study hou								hours		
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 15								15		
3.3.2. Research in library, study of electronic resources, field research5								5		
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks9							9			
3.3.4. Examination 4							4			
3.3.5. Other activities										
3.4. Total hours of individual study 29										
3.5. Total hours per semes	ter			5	75					

3

3.6. ECTS

4. Prerequisites (if necessary)

4.1. curriculum Mechanics, Thermodynamics, Electrodynamics, Atomic and Molecular Physics, Optics,

	Spectroscopy, Mathematical Analysis
4.2. competences	Use of software packages for data analysis and processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Room with multimedia equipment (video projector)
5.2. for practicals/tutorials/projects	Room with multimedia equipment (video projector) + laboratory works

6. Specific competences acquired

Professional	1) Identify and properly use the main laws and principles of physics in a given context; identifying
competences	and using notions and laws for the comic space
	2) Solving physics problems under imposed conditions
	3) Creative application of the acquired knowledge in order to understand and model the processes and
	physical properties of the systems
	4) Communication and analysis of information of a didactic, scientific and popularization nature in
	the field of physics
	5) Use / development of specific software tools
Transversal	1) Efficient use of information sources and communication and training resources
competences	2) Carrying out professional tasks efficiently and responsibly in compliance with the legislation,
	ethics and deontology specific to the field.

7. Course objectives

The presentation of the Solar System, its formation and dynamics discussed on
the basis of Newtonian theory, the formation of planets, their geological
composition and methods of investigation, their geological composition and
methods of their investment.
Use knowledge of mechanics, thermodynamics, electromagnetism and atomic
and nuclear physics to understand the Solar System.
Addressing some fundamental problems necessary to understand the phenomena
that allow the student to form a way of thinking, developing and creatively
solving physics problems.

8. Contents

8.1. Lectures [chapters]	Teaching techniques	Observations
1. Isotopic analysis. Radiochemistry. Radioactive gases (Radon)	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	3 h
2. Mass spectrometry. Visible spectrometry, IR and UV. Elemental and rock analysis. Thermoluminescence. X - ray (fluorescence) and gamma spectrometry.	Systematic exposition - lecture. Examples	4 h
3. Magnetic resonance imaging methods (MRI, RES, Mössbauer)	Systematic exposition - lecture. Heuristic conversation. Examples	3 h
4. Astronomy in visible, IR, UV. Telescopes, telescopes and radiation detectors	Systematic exposition - lecture. Heuristic conversation. Examples	3 h
5. Radio broadcasting, Radio astronomy. Radiative processes in astrophysics; emission and absorption; braking radiation (cyclotronic, synchrotronic); Radio telescopes, Compton Telescope, Radiotelescope networks, Auger Observatory, Underground laboratories - neutrino detection.	Systematic exposition - lecture. Heuristic conversation Critical analysis. Examples	3 h
6. Paleomagnetism; Theories of the origin of the magnetic fields of the planets. Terrestrial magnetometry. The Sun's magnetic field.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	4 h
7. The Zeeman effect and the Kerr effect.	Systematic exposition - lecture. Examples	2 h
8. Crystallography and crystal physics. Color centers.	Systematic exposition - lecture. Heuristic conversation. Examples	2 h

9. Astrophotography. Color control. Analog filters and digital filter. Image processing programs. Remote sensing.	Systematic exposition - lecture. Examples	2 h						
10. Calculation and data processing methods. Graphics, time series analysis, data fit, errors and confidence limits	Systematic exposition - lecture. Examples	2 h						
Bibliography	- F							
A. Carrington, A.D.McLachlan, Introduction to magnetic r	esonance with application to chemist	ry and chemical physics,						
J.R. Bolton, J.A. Weil, Electron paramagnetic resonance : 6	elementary theory and practical aplic	ations, John Wiley &						
Sons, Inc., Hoboken, New Jersey, 2007 C.P. Slichter, Principle of magnetic resonance, Springer Verlag Berlin Heidelberg GmbH, 1978								
A. Abragam, B. Bleaney, Electron Paramagnetic Resonand	ce of Transition Ions, Oxford Univers	sity Press, 1970						
M. Ikeya, New applications of electron spin resonance: Da	ting, Dosimetry and Microscopy, Wo	orld Scientific, 1993						
A. Schweiger, G. Jeschke, Principles of Pulse Electron Par	amagnetic Resonance, Oxford Unive	rsity Press, 2001						
C.D. Negut, M. Cutrubinis, ESR Standard Methods for Det	ection of Irradiated Food, în: A. K. S	hukla (ed.) Electron Spin						
Resonance in Food Science, Elsevier, Academic Press (201	l/) -l- in Londinted Frends for A. K. Chui	lle (ad) Electron Cata						
O.G. Dullu, V. Bercu, ESR Investigation of the Free Radica	als in Irradiated Foods, in: A. K. Shu	kla (ed.) Electron Spin						
Resonance in Food Science, Elsevier, Academic Press (201	L/) for the provenance study of patural s	arbonatos în AK						
Shukla (ed.) Electron Magnetic Resonance - Applications i	in Physical Sciences and Biology, Els	sevier, Academic Press						
(2019)								
Aliket Sule, A Problem Books in Astronomy and Astrophys	sics, Cygnus Pub. House 2014							
J.Kleczek, Exercises in astronomy, D.Reidel Pybl. Comp. 1	1987							
I. Albu, Gn. vass, Astronomie, matematica, informatica. Pr	rograme de calcul, București 1985							
B.W. Carrol D.A. Ostlia An introduction to Modern Astro	si de corelație, Ed. Facia 1902							
E. Toma Introducere in astrofizica. Ed. Tehnica. 1980.A	physics, Addison-Wesley, 1550							
Sanielevici, Radioactivitate, Ed. Academiei, Bucuresti, 195	56							
G. Văsaru, Izotopi stabili, Ed. Tehnică, Bucuresti 1965								
A. Szabo, Ape și gaze radioactive în R.S. România, Ed. Da	acia, Cluj-Napoca, 1978							
A. Berinde &Co, Culegere de probleme de fizică nucleară	și aplicații, Ed. Tehnică, București, 1	972						
George Gamow, O planeta numita Pământ, Ed. Științifică,	1968							
Cornelia Cristescu, Gabriela Oprescu, Magda Stavinschi, C	Cometa Halley, Ed. Ştiinţifica, 1985							
C.Grasu, Al. Maftei, Ce știm despre Luna, Ed. Tehnica, 19	989							
V. Nadolschi, Asteroizi și comete, Ed. Albatros, 1971	·] . II · D 1001							
J.C.Brandt, R.D.Chapman, Introduction to Comets, Cambr	idge Univ. Press, 1981							
Rallai et all Plasma and Astronousics: from laboratory to	outer space Bristis Council Budanes	st 2005						
A P Dickin Radiogenic Isotone Geology Cambridege Ur	niversity Press 2005 e-ISBN 978-0-	511-11544-8						
G.R. Choppin et al. Radiochemistry and Nuclear Chemistr	v. Butterworth-Heinemann, 2002. ISI	BN: 978-0-7506-7463-8						
Faure, G., 1986. Principles of Isotope Geology, John Wiley	and Sons, 589 pp.							
Neubauer, F., Bojar, AV., 2013. Origin of sediments durir	ng Cretaceous continent - continent co	ollision in the Romanian						
Southern Carpathians: Preliminary constraints from 40Ar/3	39Ar single-grain dating of detrital w	hite mica. Geologica						
Carpathica 64/5, 375-382.								
Bojar, AV., Bojar, HP., 2013. The Cretaceous/Paleogene	boundary in the East Carpathians, R	omania: geochemical,						
mineralogical and calcareous nannofossils evidence. In: Bo	ojar, AV., Melinte-Dobrinescu, M.C	., Smit, J. (eds) Isotopic						
Studies in Cretaceous Reserarch. Geological Society. Lond	lon, Special Publications, 382, 105-12	22.						
Constantin, S., Bojar, AV., Lundberg, J., Lauritzen, S.E., A	2007. Holocene and Late Pleistocene	climate record of a sub-						
Palaooclimatology Palaoocology 243/3-4, 322-338	ulem Carpaulians, Romania). Palaeo	geography,						
I R Bolton I A Weil Electron paramagnetic resonance :	elementary theory and practical aplic	ations John Wiley &						
Sons, Inc., Hoboken, New Jersev 2007	cicinentary incory and practical aprice							
M. Ikeva, New applications of electron spin resonance: Da	ting. Dosimetry and Microscopy. Wo	orld Scientific, 1993						
G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, (eds.) Quan	titative EPR, Springer, 2010	,,						
A. Lund, M. Shiotani (eds.) Applications of EPR in Radiat	tion Research, Springer, 2014							
8.3 Practicals	Teaching and learning	Observations						
	techniques							
1. Methods in radiochemistry	Guided practical activities	2 h						
2. Calculation of radioactive series. U-series imbalances.	Guided practical activities	2 h						
Examples								

8. Time series analysis.	Guided practical activities	2 h
4. X-ray attenuation in compounds and rocks. Use of the	Guided practical activities	2 h
X-ray attenuation coefficient.	L	
5. Crystallization systems. Crystallographic analysis.	Guided practical activities	2 h
Crystals and rocks. Examples		
6. Analysis of electromagnetic radiation spectra in	Guided practical activities	2 h
galactic space and interplanetary space. The role of		
cosmic dust. Examples		
7. Experimental data processing. Astrophotography.	Guided practical activities	2 h
Bibliography:		
A Carrington A D McI achlan Introduction to magnetic	resonance with application to chemis	try and chemical physics
Harper & Row. 1967	esonance with appreation to chemic	ing and chemical physics,
J.R. Bolton, J.A.Weil, Electron paramagnetic resonance :	elementary theory and practical aplic	cations, John Wiley &
Sons, Inc., Hoboken, New Jersey, 2007	5 5 1 1	
C.P. Slichter, Principle of magnetic resonance, Springer Ve	erlag Berlin Heidelberg GmbH, 1978	}
A. Abragam, B. Bleaney, Electron Paramagnetic Resonan	ce of Transition Ions, Oxford Univer	rsity Press, 1970
M. Ikeya, New applications of electron spin resonance: Da	ating, Dosimetry and Microscopy, W	orld Scientific, 1993
A. Schweiger, G. Jeschke, Principles of Pulse Electron Par	ramagnetic Resonance, Oxford Univ	ersity Press, 2001
C.D. Negut, M. Cutrubinis, ESR Standard Methods for Det	tection of Irradiated Food, in: A. K. S	Shukla (ed.) Electron Spin
C Duliu V Borcu ESP Investigation of the Free Padic	17) vals in Irradiated Foods in: A K Shi	ukla (ad.) Flactron Spin
Resonance in Food Science Elsevier Academic Press (20)	17)	
O.G. Duliu, V. Bercu, D. Negut, Mn2+ EPR spectroscopy	for the provenance study of natural (carbonates, în: A. K.
Shukla (ed.) Electron Magnetic Resonance - Applications	in Physical Sciences and Biology, El	sevier, Academic Press
(2019)	<u> </u>	
Aliket Sule, A Problem Books in Astronomy and Astrophy	sics, Cygnus Pub. House 2014	
J.Kleczek, Exercises in astronomy, D.Reidel Pybl. Comp.	1987	
I. Albu, Gh. Vass, Astronomie, matematica, informatica. P	rograme de calcul, București 1985	
S.Garlasu, C.Pop, S. Ionel, Introducere in analiza spectrala	a si de corelație, Ed. Facla 1982	
B.W. Carrol, D.A. Ostlie, An introduction to Modern Astro	ophysics, Addison-Wesley, 1996	
E. 10111d, IIII/0ducere III dsu/01121cd, Ed. 1e11111cd, 1900 A. Sanjalavici, Radioactivitata Ed. Acadamiai Bucuresti 19	56	
G Văsaru Izotoni stabili Ed Tehnică Bucuresti 1965		
A. Szabo, Ape si gaze radioactive în R.S. România, Ed. D	acia, Clui-Napoca, 1978	
A. Berinde &Co, Culegere de probleme de fizică nucleară	și aplicații, Ed. Tehnică, București,	1972
George Gamow, O planeta numita Pământ, Ed. Științifică,	1968	
Cornelia Cristescu, Gabriela Oprescu, Magda Stavinschi,	Cometa Halley, Ed. Ştiințifica, 1985	
C.Grasu, Al. Maftei, Ce știm despre Luna, Ed. Tehnica, 19	989	
V. Nadolschi, Asteroizi și comete, Ed. Albatros, 1971	1. II . D. 1001	
J.C.Brandt, R.D.Chapman, Introduction to Comets, Cambi	ridge Univ. Press, 1981	
Ballai et all Plasma and Astrophysics: from laboratory to	outer space Bristis Council Budane	ast 2005
A.P. Dickin, Radiogenic Isotope Geology. Cambridege U	iversity Press, 2005, e-ISBN: 978-0	-511-11544-8
G.R. Choppin et al. Radiochemistry and Nuclear Chemistr	y, Butterworth-Heinemann, 2002, IS	SBN: 978-0-7506-7463-8
Faure, G., 1986. Principles of Isotope Geology, John Wile	y and Sons, 589 pp.	
Neubauer, F., Bojar, AV., 2013. Origin of sediments during	ng Cretaceous continent - continent o	collision in the Romanian
Southern Carpathians: Preliminary constraints from 40Ar/	39Ar single-grain dating of detrital v	vhite mica. Geologica
Carpathica 64/5, 375-382.		
Bojar, AV., Bojar, HP., 2013. The Cretaceous/Paleogene	e boundary in the East Carpathians, I	Romania: geochemical,
mineralogical and calcareous nanhorossils evidence. In: B	ojar, A v., Melinte-Dobrinescu, M.C.	L., Smit, J. (eds) isotopic
Constantin S Boiar A -V Lundberg I Lauritzen S F	2007 Holocene and Late Pleistocen	e climate record of a sub-
Mediterranean continental environment. Poleva Cave (Sou	ithern Carpathians. Romania). Palae	ogeography,
Palaeoclimatology, Palaeoecology 243/3-4, 322-338.	,,,,,	-88FJ,
J.R. Bolton, J.A. Weil, Electron paramagnetic resonance :	elementary theory and practical aplic	cations, John Wiley &
Sons, Inc., Hoboken, New Jersey, 2007		-
M. Ikeya, New applications of electron spin resonance: Da	ating, Dosimetry and Microscopy, W	orld Scientific, 1993
G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, (eds.) Quar	titative EPR, Springer, 2010	
A. Lund, M. Shiotani (eds.) Applications of EPR in Radia	tion Research, Springer, 2014	

8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

In order to identify the contents and choose the teaching / learning methods, the holders of the subject consulted the content of similar disciplines taught at universities in the country and abroad such as Swiss Federal Institute of Technology in Zurich (ETH Zurich), University of Padua, University of Southern California. The content of the discipline is in accordance with the requirements for employment in research institutes in physics and education.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark			
10.4. Lecture	 Clarity, coherence and conciseness of the presentation; Correct use of calculation models, formulas and relationships; Ability to exemplify; 	Test	50%			
10.5.1. Tutorial						
10.5.2. Practical	 Individual activity Knowledge and use of experimental techniques; Interpretation of results; 	Test	50 %			
10.5.3. Project						
10.6. Minimal requirements for	or passing the exam					
Course attendance: minimum 50 % of the time						
Tutorial attendance: tutorials a	are compulsory					

Date 15.10.2021	Teacher's name and signature Prof. dr. Octavian Duliu	Practicals/Tutorials instructor(s) name(s) and signature(s) Prof. dr. Octavian Duliu	

Date of approval 11.11.2021

Head of Department Prof.dr. Alexandru Jipa

DFC.303F.EN Unconventional methods for energy production

1. Study program

1.1. University	University of Bucharest				
0 1.2. Faculty	Faculty of Physics				
1.3. Department	The Structure of Matter, the Physics of the Atmosphere and the Earth,				
	Astrophysics				
1.4. Field of study	Physics				
1.5. Course of study	Undergraduate/Bachelor of Science				
1.6. Study program	Physics (in English)				
1.7. Study mode	Full-time study				

2. Course unit

2.1. Course unit title	Unconventiona	Unconventional methods for energy production						
2.2. Teacher Lecturer PhD Sanda Voinea								
2.3. Tutorials/Practicals ins								
2.4. Year of study 3	2.6. Type of	С	2.7. Type of	Content ¹⁾	DC			

			evaluation	course unit	Type ²⁾	Dfac
4 1 1	. 1.	1				

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	3	distribution:	Lectures	2	Tutorials	0	Practicals	1	Project	0
3.2. Total hours per semester	42	distribution:	Lectures	28	Tutorials	0	Practicals	14	Project	0
3.3 Distribution of estimat	ed tin	ne for study			-					hours
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 8							8			
3.3.2. Research in library, study of electronic resources, field research 9							9			
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks 12						12				
3.3.4. Examination 4						4				
3.3.5. Other activities										
3.4. Total hours of individual study 29										
3.5. Total hours per semes	ter			7	75					

4. Prerequisites (if necessary)

3.6. ECTS

4.1. curriculum	Notions of mathematics, physics, chemistry intermediate level	
4.2. competences	Knowledge of the use of graphic representation programs.	

3

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia room (video projector)
5.2. for practicals/tutorials/projects	Laboratory with modern equipment that allows experiments to be performed;

6. Specific competences acquired

Professional	• Acquiring and understanding the theoretical concepts linked to the physical and electrochemical
competences	phenomena that cause the conversion of unconventional energy from various renewable sources.
	• Learning the specific terminology used by the discipline;
	• Developing the ability to connect the results of the field with other fundamental disciplines
	(electricity, electronics, polymer physics, chemistry, biology);
	• Ability to use the notions in the field in specific situations of practical interest;
	• Development of experimenter skills; Development of information management skills (ability to
	collect and analyze information from various sources including the use of software packages for data
	analysis and processing)
Transversal	• Cultivating the concern for professional development by training the skills of abstraction and those
competences	of experimental testing of scientific theories;
_	• Developing the tendency to get involved in scientific activities (elaboration of articles and
	specialized studies) and in the design of laboratory experiments.
	• Developing the ability to adapt and respond quickly to new situations. Concern for the achievement
	of the work done

7. Course objectives

7.1. General objective	• Assimilation of theoretical and experimental foundations associated with unconventional energy sources and their specific parameters. Understanding the theoretical and practical principles of construction and use of fuel cells, wind turbines, geothermal power plants, solar power plants.	
7.2. Specific objectives	 uneoretical and practical principles of construction and use of fuel cells, wind turbines, geothermal power plants, solar power plants. Understanding the fundamental concepts and models in the field; Learning scientific methods of analysis; Description and understanding of the phenomenon of energy conversion that takes place in different devices; -Knowledge of the operating principles of wind, geothermal and solar power plants. Development of the ability to quantitatively analyze specific cases Development of experimental skills and mastering the principles of operation of energy converters. 	

8. Contents			
8.1. Lectures [chapters]	Teaching techniques	Observations	
Alternative and renewable types of energy.	Lecture. Example. Discussion.	4 hours	
Environmental impact.			
Types of fuel cells. Fuel cell components.	Lecture. Example. Discussion.	4 hours	
Principles of fuel cell operation. Electrocatalysts. Ion	Lecture. Example. Discussion.	4 hours	
conducting membranes.			
Green hydrogen. Production and storage.	Lecture. Example. Discussion.	4 hours	
Wind energy. Types of wind turbines.	Lecture. Example. Discussion.	4 hours	
Geothermal energy. Geothermal power plants.	Lecture. Example. Discussion.	4 hours	
Bibliografie:			
Bibliografie:			
Jürgen Garche, Chris K. Dyer Encyclopedia of electroche	mical power sources, Elsevier 2009		
Kirt A. Page, Christopher L. Soles, James Runt, Polymers	for Energy Storage and Delivery: Po	lyelectrolytes for Batteries	
and Fuel Cells			
F. Barbir PEM Fuel Cells theory and practice, Elsevier 20			
Electrochimical methods: Fundamentals and Applications	, Allen J. Bard, ISBN:978-0-12078-1	42-3, Elsevier	
Wolf_vielsticn_Hubert_AGastelger, Handbook Fuel Ce	lis set / vol, willey 2009		
Fundamentals of materials for Energy and Environmental S	http://index.php	Cabon	
Sustainable operate Loffercon W Tester Elisabeth M. Drak	Michael I	Callell	
Driscoll Michael W. Colay William A. Deters MIT Proc			
Ponowable energy Third Edition Screnson 2005	5, 2005		
Notite de curs Sanda Voinea Adriana Bălan ndf			
8.2 Tutorials	Teaching and learning		
	techniques	Observations	
Bibliography:	1		
9.2 Practicals	Teaching and learning	Obcomunitions	
o.s. Placticals	techniques	Observations	
Electrolysis. The laws of electrolysis.	Guided practical activity	4 hours	
Characteristic curve of the electrolyzer. Hydrogen	Guided practical activity	4 hours	
production. Hydrogen storage in metal hydrides.			
Characteristic curve of the H2 / O2 fuel cell. Energy	Guided practical activity	4 hours	
efficiency of the H2 / O2 fuel cell. Mg fuel cell.			
Wind turbine. Laboratory testing.	Guided practical activity	2 hours	
Solar and solar thermal panels. Laboratory testing	Guided practical activity	4 hours	
Bibliography:			
Laboratory work. Renewable and alternative energy sources. Ioan Stamatin, Sanda Voinea			
8.4. Project	Teaching and learning	Observations	
	techniques		
Bibliography:			

• The discipline responds to the current requirements of development and evolution at national and international level of higher education in the field of physics and energy sources.

• The subject curriculum is adapted to the current level of knowledge and requirements of scientific research and

technological activities, being correlated with similar study programs from European universities applying the Bologna

system. The holders of the subject consulted the content of similar disciplines taught at universities in the country and abroad (Princeton University - Chemistry Dep, Denmark Technical University - Department of Energy Conversion and Storage, Trinity College Dublin - School of Chemistry, Reykjavik University / Iceland School of Energy). The content of the discipline is in accordance with the requirements for employment in research institutes in physics and materials science and in education (in accordance with the law).

• In the current context of technological development, the targeted fields of activity are practically unlimited, the possible employers being both from the educational environment and from the industrial and research-development environment.

10. Assessment			
Activity type	10.1. A	10.2. Assessment	10.3. Weight in
	10.1. Assessment criteria	methods	final mark
10.4. Lecture	- Ability to understand and present	Colloquium - presentation of	
	correctly the main experimental and	a project based on a course	50%
	theoretical results;	topic proposed by the	
	- The ability to argue scientifically,	teacher	
	the ability to support mathematically		
	the main results;		
	- Ability to relevantly exemplify the	Individual / group	20%
	ideas presented;	homework	
	- Ability to extract significant		
	practical consequences from		
	theoretical results;		
	- Ability to use theoretical knowledge		
	in solving test problems		
	-solving homework		
10.5.1. Tutorial			200/
10.5.2. Practical	Ability to describe and perform	• -Laboratory Colloquium-	30%
	laboratory experiments;	Evaluation of reports	
	- Addity to use specific laboratory	prepared in the laboratory,	
	equipment;	correct data processing and	
	- Participation without exception in	drawing their own	
	Interpretation of results and timely	conclusions	
	- Interpretation of results and timery		
	materialized in the presentation of		
	laboratory reports		
10.5.3 Project			
10.6 Minimal requirements for	nr passing the exam		
Completion of all laboratory work and grade 5 at the colloquium			
Homework solving.			
Completion of a project according to the topic proposed by the teacher to obtain the score 5.			

Date 10.11.2021	Teacher's name and signature Lecturer Sanda Voinea	Practicals/Tutorials instructor(s) name(s) and signature(s) Adriana Balan
Date of approval 11.11.2021	Head of Department Professor PhD Alexandru Jipa	