ELECTRICITY

Items 1-10 are multiple-choice with a single correct answer, and each is scored with 0.9 points (1 point awarded from start for this section).

Items 11 and 12 are scored independently with 4.5 points each (1 point awarded from start for this section) Final score is calculated as: $N=0.6N_1+0.4N_2$, unde

 N_1 =score for the first section (items 1-10) +1 point from start,

 N_2 =score for the second section (items 11-12) +1 point from start.

Working time – two hours.

1. At the terminals of a battery with electromotive voltage E and internal resistance r, an ideal ammeter is connected, indicating the current intensity I_0 . By disconnecting the ideal ammeter and connecting an ammeter with internal resistance R_A across the battery terminals, it shows the current intensity I. The expressions for these two quantities are:

a) $I_0 = I = \frac{E}{r}$	b) $I_0 = \frac{E}{r}$ $I = \frac{E}{r + R_A}$	c) $I_0 = \frac{E}{r}$ $I = \frac{E}{R_A}$	$d I_0 = I = \frac{E}{r + R_A}$
----------------------------	---	---	---------------------------------

2. What expression represents the maximum power delivered by a voltage source to a resistor with variable resistance? The electromotive voltage E of the source and its internal resistance r are known.

a) $P = \frac{E^2}{E}$	b) $P_{mm} = \frac{2E^2}{2E^2}$	c) $P = \frac{E^2}{E}$	d) $P = \frac{4E^2}{2}$
r	r	4r	r

3. Which statement is correct?

a) The current intensity	b)The electric power is a	c)The electric charge is a	d) The force is a vector
is a vector quantity	vector quantity	vector quantity	quantity

4. A student conducts an experiment in which he measures the voltage across a metallic resistor through which a current is flowing and finds a value of 2V. Knowing that the power dissipated in the conductor is 2W, determine the electric current intensity through the conductor.

a) <i>I</i> =1 <i>A</i>	b) <i>I</i> =2 <i>A</i>	c) <i>I</i> =3 <i>A</i>	d) $I = 4A$

5. Three identical light bulbs are connected in parallel across the terminals of an ideal battery. If a fourth light bulb, identical to the first three, is added in parallel across the battery terminals, then:

a)The voltage across	b)The current intensity	c) The voltage across	d) The current intensity
the battery terminals	through the battery	the battery terminals	through the battery
decreases	decreases	does not change	does not change

6. On a resistor with a resistance of 5Ω , a voltage of 10V is applied. What is the current intensity through the conductor?

a) 2 A	b)50 <i>A</i>	c) 0,5 <i>A</i>	d) 15 <i>A</i>

7. A cylindrical conductor with a cross-sectional area of 1mm^2 carries a intensity of 1A. The concentration of conduction electrons is $n = 10^{28} \text{m}^{-3}$, and the elementary electric charge is $e = 1.6 \times 10^{-19}$ C. What average speed has the ensemble of conduction electrons?

8. A cylindrical resistor made of a material with the electrical resistivity ρ , has length l and cross-sectional area S. Its electrical resistance can be expressed as follows:

a) $R = \rho S l$ b) $R = \frac{\rho l}{S}$	c) $R = \frac{\rho S}{l}$	d) $R = \frac{1}{\rho lS}$
---	---------------------------	----------------------------

9. The electrical energy consumed during Ct=1s by a resistor of 1Ω traversed by a current of 1A is:

a)
$$W = RI\Delta t = 1J$$
 b) $W = R^2 I\Delta t = 1J$ c) $W = I^2 R\Delta t^2 = 1J$ d) $W = UI\Delta t = 1J$

10. During a time of 1s, an arbitrary section of some conductor is traversed by an electric charge of 1C. The average current flowing in the conductor is:

a) $I = Q\Delta t = 1A$	b) $I = \frac{Q}{\Delta t} = 1A$	c) $I = \frac{\Delta t}{Q} = 1A$	d) $I = \sqrt{\frac{Q}{\Delta t}} = 1A$
-------------------------	----------------------------------	----------------------------------	---

 R_1 R_2 R_3 R_4 R_4

1

11. (**4.5p**) The setup in the figure has $R_1 = n_1 \Omega$, $R_2 = n_2 \Omega$, $R_3 = n_3 \Omega$, $R_4 = n_4 \Omega$, with n_1 , n_2 , n_3 and n_4 integers, solutions to the quadratic equations $x^2 - b_1 x + 21 = 0$ or $x^2 - b_2 x + 21 = 0$.

(a) What minimum value R_{\min} can the equivalent resistance between terminals 1 and 2 have? (1p)

(b) What maximum value R_{max} can the equivalent resistance between terminals 1 and 2 have? (**1p**)

(c) Under the conditions of (a), an ideal dc voltage source with e.m.f. E=10V is connected to terminals 1 and 2. What intensities I_3 , I_4 flow through R_3 , R_4 ? (1.5p)

(d) What is the minimum value R_{\min}^{\Box} of the equivalent resistance of a setup (different from the one in the figure) in which all four resistances are mandatory used? (**1p**)

12. (**4.5p**) Some amount of water with the initial temperature T_0 is brought to a boil after $\Delta t_1 = 10$ min. using an electric kettle with the electric resistance R_1 and its efficiency $\eta_1 = 0.5$.

(a) What is R_2 of a kettle with an efficiency $\eta_2 = 0.8$ that boils the same amount of water in $\Delta t_2 = 20$ min.? (1p)

(b) If both kettles are used *simultaneously* to boil the water, what is the *time interval* Δt_3 ?(**1p**)

(c) If both kettles are used *simultaneously*, their resistors being connected in parallel, *how long* Δt_4 will it take to bring the water to a boil? (**1p**)

(d) What is the *efficiency* η of using kettles under the conditions of point (c)?

Note: The initial temperature T_0 of the water is always the same. (1.5p)