
Thermal conductivity of metals 

 

 

1. Overview of heat transfer phenomena 

 Heat transfer is the transition of thermal energy from a heated item to a cooler item. When an 

object or fluid is at a different temperature than its surroundings or another object, transfer of 

thermal energy, also known as heat transfer, or heat exchange, occurs in such a way that the body 

and the surroundings reach thermal equilibrium. Heat transfer always occurs from a hot body to a 

cold one, a result of the second law of thermodynamics. Where there is a temperature difference 

between objects in proximity, heat transfer between them can never be stopped; it can only be 

slowed down. 

 Classical transfer of thermal energy occurs only through conduction, convection, radiation or 

any combination of these. Heat transfer associated with carriage of the heat of phase change by a 

substance (such as steam which carries the heat of boiling) can be fundamentally treated as a 

variation of convection heat transfer. In each case, the driving force for heat transfer is a difference 

of temperature. 

 

2. Heat conduction 

 Conduction is the transfer of thermal energy from a region of higher temperature to a region of 

lower temperature through direct molecular communication within a medium or between mediums 

indirect physical contact without a flow of the material medium. The transfer ofenergy could be 

primarily by elastic impact as in fluids or by free electron diffusion as predominant in metals or 

phonon vibration as predominant in insulators. In other words, heat is transferred by conduction 

when adjacent atoms vibrate against one another, or as electrons move from atom to atom. 

 Conduction is greater in solids, where atoms are in constant close contact. In liquids (except 

liquid metals) and gases, the molecules are usually further apart, giving a lower chance of 

molecules colliding and passing on thermal energy. Heat conduction is directly analogous to 

diffusion of particles into a fluid, in the situation where there are no fluid currents. This type of heat 

diffusion differs from mass diffusion in behaviour, only in as much as it can occur in solids, 

whereas mass diffusion is mostly limited to fluids. Metals (eg. copper) are usually the best 

conductors of thermal energy. This is due to the way that metals are chemically bonded: metallic 

bonds (as opposed to covalent or ionic bonds) have free-moving electrons and form a crystalline 

structure, greatly aiding in the transfer of thermal energy. As density decreases so does conduction. 

Therefore, fluids (and especially gases) are less conductive. This is due to the large distance 



between atoms in a gas: fewer collisions between atoms means less conduction. Conductivity of 

gases increases with temperature but only slightly with pressure near and above atmospheric. To 

quantify the ease with which a particular medium conducts, the thermal conductivity, also known 

as the conductivity constant or conduction coefficient, κ is used. This parameter is defined as the 

infinitesimal quantity of thermal energy, δQ, transmitted during an infinitesimal time interval dt 

through a thickness dx, in a direction normal to a surface of area (A), due to a temperature 

difference (dT): 
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where q is the so-called heat current. Eq. (1) is suitable to describe the heat transport along a 

specified direction (here denoted by x). In general three-dimensional cases, the spatial variation of 

the temperature must be taken into account and the temperature gradient should replace its partial 

derivative in the right hand side of Eq. (1). Accordingly, the heat current will become a vector 

quantity. 

 Thermal conductivity is a material property that is primarily dependent on the medium's phase, 

temperature, density, and molecular bonding. Eq. (1) is valid when the medium is homogeneous. 

When the heat transport occurs in inhomogeneous media, the thermal conductivity varies with x. A 

particularly interesting case is when κ(x) has sharp discontinuities at interfaces between thermally 

different environments. In such cases, the heat current across the interface obeys the Newton’s 

cooling law: 

  q t A T   , (2) 

where ΔT = T1-T2 is the temperature jump across the interface when the heat flows from region 1 

towards region 2. The quantity η is the so-called heat transfer coefficient and is a characteristic of 

every thermal interface. 

 

3. Example of a mixed problem with heat conduction and cooling phenomena 

 Consider a rod of a homogeneous material (e.g. a metal) placed in some atmospheric 

environment. The rod is heated at one of its ends and the thermal energy propagates along it 

towards the opposite end. Simultaneously, a cooling process takes place at every segment of the 

rod. If the heat source is constant in time, a stationary temperature distribution will be achieved 

along the rod. By focusing on some infinitesimal segment of the rod, between x and x + dx, one may 

easily express the balance of thermal energy in the steady state in the following way: the heat q(x)dt 

entering the segment through its end that is closest to the heat source will split in q(x+dx)dt that is 

delivered through the other end and the heat dq(x)dt that is lost to the neighboring air by the cooling 

process (Fig. 1). 



Writing T’(x) for the position derivative of the temperature (which is now constant in time), one 

may apply Eq. (1) to both ends of the considered segment: 
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By further applying well-known rules of Calculus, one may find: 

    dq x AT x   . (3) 

The heat current dq(x) is lost by cooling to the environment. Therefore Eq. Can now apply with A 

replaced by the lateral area πd dx of the considered segment and with ΔT replaced by T(x)-Ta, where 

Ta is the environmental air temperature and d is the diameter of the assumed cylindrical rod: 
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 Combining Eqs. (3) and (4), the following differential equation for the stationary temperature 

distribution along the rod is readily obtained: 
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 This second-order differential equation has a straightforward general solution: 
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where A and B are undetermined constants. To specify these constants, the values of the 

temperature at two different positions on the rod should be known. For example, take the 

temperatures at the ends of the rod, Th and Tl, as given: T(x = 0) = Tl and T(x = L) = Th. Applying 

these conditions to the solution (6), one may readily find: 
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Figure 1: Sketch of the steady-state thermal 
energy balance in an infinitesimal segment of the 
test rod. 



 
 

 1
1

2sinh
L L

h l aB T T e T e
L

 


       , (8) 

where sinh(φ) is the hyperbolic sinus of the quantity φ. 

 

4. Method of measuring the thermal conductivity of a metallic rod 

 The conditions described in the previous section can easily be obtained for a sample metallic 

rod. A constant flux of thermal energy can be injected through one of its end and the stationary 

temperature distribution can be measured along the rod in some specified points. Thus, an 

experimental steady-state temperature distribution, Texp(x) is obtained. By modifying the parameter 

α in Eqs. (6)-(8), one may fit the experimental curve with the theoretical one. From the best-fit 

value of α one may then find the thermal conductivity of the sample (Eq. (5)). The only problem is 

to have the corresponding heat transfer coefficient, η, and the geometrical parameters of the rod. 

 The heat transfer coefficient can be determined separately, by a direct cooling experiment with 

the whole rod initially heated at some temperature T0. The rod is then placed for cooling in the same 

environment as before. Its average temperature is measured over time and the theoretical cooling 

curve, T(t), is fitted with η as a parameter on the experimental one. For the present version of the 

experiment the value of η for the (aluminium) rod has been determined: η = 15,129 W/(m2K). 

 

5. Experimental setup 

 The sample rod is placed vertically with its upper end 

in tight contact to an aluminium receptacle where water is 

kept at the boiling point by means of an immersion heater 

(Figure 2). 

 Warning! Keep clear of the receptacle’s area to avoid 

burns from erratic drops of hot water jumping out the vessel. 

 In the current version of this experiment, the rest of the 

rod is in full contact with the environmental air whose 

temperature can be measured with a thermocouple fixed in 

rod’s neighborhood. Another thermocouple is used to 

measure the local temperature by placing it in special 

cavities of the rod. To allow better thermal contact that 

thermocouple’s end should be greased with special thermo-

conductive paste. Temperatures are read in Celsius on a 

two-screen universal measuring amplifier. 

 
Figure 2: Experimental set-up for 
thermal conductivity. 



 The cavities positions with respect to the lower end of the rod are the following: 0 cm (just at 

the lower end); 7,0 cm; 10,4 cm; 14,0 cm; 17,5 cm; 21,0 cm; 24,4 cm; 28,0 cm; 31,5 cm; 35,0 cm; 

38,5 cm. Astfel, L = 38,5 cm. 

 

6. Procedure 

 The temperature at the lowest end of the rod is measured for some time, about 10 minutes after 

the water became to boil in the receptacle. If the measured values seem to keep constant in time, the 

steady-state of the cooling phenomenon is reached. From this moment on the temperature 

distribution can be read by placing the greased end of the thermocouple in each alveolus of the rod, 

starting from the very bottom one. The temperatures are recorded and then written in a text file by 

means of the Notepad utility. The temperatures should be written one in a line by pressing “Enter” 

after each value. The text file should be then saved as “texp.txt” in the folder entitled 

“Conductivitate metale”, where the Mathcad 14 program “Conductivitatea termica a 

metalelor.xmcdz” exists. After completing the text file open the program “Conductivitatea termica a 

metalelor.xmcdz”. The program automatically computes the theoretical temperature distribution 

(red curve) of Eq. (6) for a given value of the parameter α. Also, the program reads the “texp.txt” 

file and plots the experimental temperatures (in Kelvin – blue dots) along with the theoretical 

distribution. In the first yellow placeholder defining the value of the variable “taer” write the 

average value of the air temperature near the sample rod during the experiment. Then modify the 

parameter α in the second yellow placeholder to get the theoretical temperature distribution as close 

as possible to the experimental one. The procedure is termed as manual fitting. To run the program 

each time a modification of the value of α has been made one can simply move the cursor in line 

with the graph and left click the mouse (alternatively, the key F9 can be pressed). When the best fit 

has been attaint, read the corresponding value of the thermal conductivity in the brick placeholder in 

line with the graph. The thermal conductivity is computed from the value of α from the following 

relation (see Eq. 5): 
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Notes 

1) The value of α to be entered in the second yellow placeholder of the fitting program is actually a 

dimensionless parameter. The one used in Eq. 9 can be obtained from it through a multiplication by 

the sample’s length, L. 

2) Due to the probable bad thermal contact during the temperature measurements, the method is 

prone to a systematic erroneous decrease of the thermal conductivity. 


