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Chapter 1. Introduction to Solid State Physics.  

1.1. Fermi – Dirac Distribution and the 
Density of Energy States in a Solid 
Let be ( )1EP  the probability to have an electron 

in the state characterised by the energy E1, then   

( )1EP1−  will be the probability to have not an 

electron in this state (on this energy level). For the energy level configuration, depicted in 

Fig.1.1, the total probability to have such a state (E1 and E2 filled and E3 and E4 unfilled) is 

given by the formula:  

( ) ( ) ( )( ) ( )( )4321 EP1EP1EPEP −⋅−⋅⋅   

The probability for the complementary situation is: 

( )( ) ( )( ) ( ) ( )4321 EPEPEP1EP1 ⋅⋅−⋅−   

Both probabilities must be equal in the case of thermal equilibrium, therefore we can write the 

following equality:  

( ) ( ) ( ) ( ) 







−⋅








−=








−⋅








− 1

EP
1

1
EP
1

1
EP
1

1
EP
1

2143

      1.1.1.  

But the principle of energy conservation requires 

that    4321 EEEE +=+  and in this case only the 

function A Eexp ( )β  can be identified with 


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)E(P

1
, where β = 1 / kT  and 

A E kTF= −exp ( / ) .  

Then the probability to have an electron in the state 

characterised by energy E is:  
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==    1.1.2.  

and the probability to have an empty state is :  
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The function f is known as the “Fermi-Dirac distribution” and is represented in fig.1.2.  

At T=0 K, the shape of this function is like the shape of a “step function” (see dotted line) ;  

At KT 0≠  , for FEE = , the probability to have an electron on this state is 1/2. The shape of  

Fermi-Dirac distribution for this temperature is represented by an continuous line.  

The state characterised by FEE =  is known as “Fermi level” and represents a virtual 

energy level characteristic for any solid state material. This level is the upper limit of energy 

levels which can be filled with electrons at T=0 K. (Only in the case of metals exist such 

situation. For isolators and semiconductors the upper limit been lower, as you will see in next 

paragraph)  

Next problem, in solid state physics, is to obtain the formula for density of such energy states 

(the number of energy levels in the unit volume). In order to accomplish that, we must work in 

the “momentum space”.  

The quantum mechanics asserts that in a stationary state, an electron can be described by a 

stationary wave function. That means that in a bulk material having the characteristic 

dimension L, only electrons that have the associated wavelengths λ verifying L n= λ
2

  

can exist, where n is a positive integer. This formula must hold on all three coordinates (x, y, 

z). But the wavelength is linked to the momentum (or impulse) p through “de Broglie” formula 

λ = h
p

. Consequently we have the following 

relations between momentum (on each space 

direction) and the dimension of the bulk  

material: 
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( 1nnn zyx === ), with the volume 
3
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h
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
 , we can have two states (Pauli’s Principle), 

represented in Fig.1.3 by two arrows (spin quantum number 
2
1

± . ) 

Consequently, the density of electrons’ states in the unit cell will be:  
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In this case we can calculate which is the number of electrons which have the momentum lying 

between p and p+dp , using the Fig.1.4 which represents only the positive region of the space 

of momentum, because all components of the electron’s momentum are positive.  

dpp4
8
1

h
L22dVddn 2

3

dpp,p π×





=×=+  

Starting from this formula, we can find the 

density of electronic states which have the 

momentum between p and p+dp   
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  1.1.5. 

But the kinetic energy for the quasi-free electron can be written as 
m2

p
E

2
k =   . Therefore, we 

can rewrite the 1.4 formula as the density of electronic states which have the energy between 

E and E+dE  

( ) ( ) 2/1
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2/3*
n3k Em2
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4EN π=       1.1.6.  

where m*n is the effective mass of the electron.    
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A similar formula can be found for holes (the density of unfilled electronic states that have the 

energy between E and E+dE 

( ) ( ) 2/1
k

2/3*
p3kp Em2

h

4
EN

π
=       1.1.7.  

where m*p is the effective mass of the hole.   

 

1.2. The Density of Charge Carriers in a Pure Semiconductor.  

 In an pure semiconductor, as we mention in the introduction, we can represent the 

energy states of an electron or hole using the model of energy bands. Let’s consider for 

example the case of the Germanium crystalline lattice. As can be seen in Fig.1.5, the 

bounded valence electrons are in the Valence Band, characterised by the upper energy level 

EV, but can exist too in an excited state in Conduction Band, characterised by the lower 

energy level EC. In the Conduction Band the electrons are not bounded to the atom and they 

can have an moving through the crystalline lattice from atom to atom. The same thing can be 

done by the hole, which represents the empty state which remain in the Valence Band after 

the jump of the electron from Valence Band to the Conduction Band by thermal excitation.  

But for electrons ck EEE −=  and for holes 

EEE vk −= .  

Now we can compute the density of charge carriers in 

CB or in VB, using next formulas:  

∫
+∞

==
CE ee dE)E(N)E(fnn     1.2.1. 

or, for holes,   

 ∫ ∞−
== VE

ppp dE)E(N)E(fpn        1.2.2.  

We will compute the density of charge carriers using the 1.2.1, 1.2.3, 1.1.6 and 1.1.7 

substituted into 1.2.1 and 1.2.2:  
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and for holes:  

( ) ( ) dE

e1

1EE
h

m24
 = p

kT

EE
2/1

v

E

3

2/3*
p

F

v

−
∞−

+

−
π

∫    

In order to be able to integrate the above equations, we have to make certain approximations, 

allowed by the typical environment conditions. For instance, at room temperature, T=300oK, 

the index of exponential from the denominator of Fermi-Dirac distribution is very high, and in 

this case we can neglect the factor 1 from the denominator. In this situation the Fermi-Dirac 

distribution becomes for electrons:  
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Now we can use the next mathematical artifice  
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−
×= , where the first term is a constant for the semiconductor 

material, that can be moved out of the integral. Finally the expression for density of electrons 

in Conduction Band is :  
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and, correspondingly, the density of holes we will be:   
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By making a change of variable in both integrals,  

kT
EE

x   or     
kT

EE
x v2c2 −

=
−

=  ,  the expression for electron density becomes  
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correspondingly, the expression for holes density becomes:   
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Now both integrals can be computed by the parts method, as shown below:   
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where the last integral is half of the Poisson integral ∫
+∞

∞−

− π=dxe
2x   

Now we have the final expression for both densities of charge carriers if we introduce the 

1.2.5. equation in 1.2.3. and 1.2.4. equations: 
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respectively 
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=

π
=    1.2.7.  

The constants Nc and Nv are so called “density of energy states” in C.B., respectively in V.B. 

 
*
p

*
nVC mm   because    NN <<    

The position of Fermi level in pure semiconductors.  

In an pure semiconductor, the density of the two types of charge carriers is the same n=p 

because these carriers are generated by thermal excitation from Valence Band to Conduction 

Band, as shown in Fig.1.5. 

Thus, we can write the following equality: 
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      1.2.8.  

 

Now, we can transform the equation 1.2.8. into:  

kT
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e
N
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= ,   

to which we can apply the logarithm and then, with a simple operation we can extract the value 

of Fermi level:  

c

vvc
F N

N
ln

2
kT

2
EE

E +
+

=        1.2.9.  

The equation shows that the Fermi level is in the middle of forbidden band, at T=0
0
K. If 

temperature is increasing, the Fermi level shifts towards the Conduction Band (see figure 1.6)  

The most important equations, valid in any 

semiconductor are the “law of charge conservation”.  

Based on equation 1.2.8. we can prove that the 

product of density charge carriers is a constant of 

semiconductor material, because this product does 

not depend on Fermi level. This product is the so 

called “pure density” : 

 n n p N N ei C V

E E
kT

c v
2 = × =

− −

    1.2.10.   

For the most common semiconductor materials, at room temperature, the values of this 

constants are:  

Germanium: =×=×= −− 2318319 10610041 iVC n  ;cmN  ;cm.N  2.4 x 1026 cm-6 

Silicon: 6202319319 10210411082 −−− ×=×=×= cmn  ;cm.N  ;cm.N iVC    
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1.3. Extrinsic Semiconductors (Doped Semiconductors).  

p doped Semiconductors. 

If in a material like Silicon or Germanium we introduce atoms like Al, Ga or In , which are 

atoms from the III rd group of Mendeleev’s Table , the ionisation potential of this atoms will 

dramatically decrease. This effect is explained by the dependence of ionisation potential by 

the 2
r/1 ε , where rε  is the relative dielectric constant of the medium in which are these atoms, 

respectively the relative dielectric constant of Germanium or Silicon.  

For this materials the relative dielectric constant is 12
Sir =ε  and respectively 16

Ger =ε . The 

ionisation potential for such atoms from III group of Mendeleev’s Table, inserted in Ge or Si, is 

given in Table 1.  

Table 1 
 B Al Ga In 

Si  0.045eV 0.057eV 0.065eV 0.16eV 
Ge 0.0104eV 0.0102eV 0.0108eV 0.0112eV 

These energies are represented in the 

model of band energies by the existence 

of an acceptor energy level, very close to 

Valence Band (distance between this 

acceptor energy level and the upper 

energy level of Valence Band - E
v
, is the 

ionisation energy of impurity atoms) as in 

figure 1.7.   

Arrows indicate transitions of electrons from the Valence Band to acceptor level or to 

Conduction Band. Because the acceptor level is closer to Valence Band than Conduction 

Band, the probability to have such a transition in acceptor level is higher than the probability to 

have such a transition to Conduction Band. For that we will have more electrons on acceptor 

level than in the Conduction Band, but all these electrons are bounded electrons, ionising the 
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acceptor impurities. They do not participate to conduction phenomena, but holes, generated 

by such transitions can participate to conduction phenomena and they are more than the 

electrons from Conduction Band. The holes are “majority charge carriers”. For this reason we 

named these semiconductors “P semiconductors”. The probability to have an electron on 

acceptor level has the same form like Fermi-Dirac distribution for electrons in Conduction 

Band, if we did not take into account the degeneracy factor  

    

kT
EEA

FA
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=   

then the density of ionised acceptors will be:  
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and the density of holes obtained by the phenomena of such ionisation will be:  
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From this equality we can find the position of Fermi level in the P semiconductor  
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thus, by using the same procedure we applied for pure semiconductors, we find :  
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This formula shows us than at T=0
0
K the Fermi 

level is at the middle of the distance between 

acceptor level and upper level of Valence Band. If 

the temperature is increasing the Fermi level 

shifts to the middle of  the Forbidden Bend (see 

Figure 1.8), if NA<NV, as in the case of 

temperature higher than 1000K.  

From Fig.1.8 we conclude that at room temperature all impurities are ionised. That means 

that the density of “majority carriers” is  

Ap Np ≈   

 
At this temperature we have minority charge carriers too, generated by band to band 

transitions of valence electrons (see Fig.7). The density of these carriers can be calculated 

with the help of  1.2.10. equation   

Therefore   
A

2
i

p N
n

n ≈         1.3.4.  

n Doped Semiconductors.  

 The same phenomenon of decreasing of ionisation potential is happening in an pure 

semiconductor doped with elements from V th group of Mendeleev’s Table, like P, As, St . In 

the Table 2 you can see the modified ionisation potentials of such impurities.  

Table 2  
 P As Sb Bi 

Si  0.045eV 0.049eV 0.039eV 0.067eV 
Ge 0.012eV 0.0127eV 0.0096eV - 
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The diagram of energy bands of such 

semiconductor is shown in Figure 1.9. 

In this case a donor level represents the 

energy of ionisation. In this case the 

“majority carriers” are electrons 

because the probability of a jump from 

donor level is higher than the probability 

of a band to band jump.  

 The probability of ionisation of an impurity will be similar with Fermi-Dirac distribution, 

if we did not take into account the degeneracy factor   

  

kT
EED
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1
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=    

therefore the density of ionised donors is  
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−

−++ ≈=    1.3.5.  

and the density of electrons obtained by the phenomena of such ionisation will be:  
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== DkT

EE

C NeNn
Fc

      1.3.6.   

 
From this equality we can find the position of Fermi level in the P semiconductor  
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DkT
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DFFc
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then, using the same procedure like in the case of pure semiconductors we will find :  

    
D

CcD
F N

N
ln

2
kT

2
EE

E
n

−
+

=     1.3.7.  

This equation shows us than at T=0
0
K the Fermi level is at the middle of the distance between 

donor level and lower level of Conduction Band. If the temperature is increasing upper to  
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100 0K, the Fermi level shifts to the middle of  Forbidden Band because Nc becomes higher 

than ND. (see Figure 1.10).  

By looking at Fig.1.10 we can see that at room 

temperature, practically all impurities are 

ionised. That means that the density of 

“majority carriers” is  

  n Nn D≈   

But at this temperature we have too, minority 

carriers generated by band to band jumps of 

valence electrons (see Fig.1.9). The density of 

these carriers can be calculated using  the 1.2.10. equation. Therefore,   

 
D

2
i

n N
np ≈       1.3.8.   

1.4. Physical Phenomena in Semiconductors.  

Conduction. Different from metals, in semiconductors two different kinds of charge carriers 

participate to conduction phenomena: negative charge carriers (electrons) and positive 

charge carriers (holes). In the presence of an electric field both charge carriers will move to 

the direction of this field (electrons in the opposite way and holes in the same way of the field). 

Then, in a semiconductor we will have two components of the current density:  

      Eenenvj nnn µ==   1.4.1. 

    Eepepvj ppp µ==    1.4.2. 

where, Ev nn µ=  and Ev pp µ= , are the drift velocities of charge carriers. These velocities 

are proportional to the intensity of electric field E , the constant of proportionality representing  

“the mobility” of the charge carrier, µ.  

 



 13 

 Then the total current density can be written as the sum of both components, given by 

equations 1.4.1 and 1.4.2:  

 EE pnnnpntot epenjjj µ+µ=+=   1.4.3. 

 Using equation 1.4.3. we can find the expression for electrical conductivity of the 

semiconductor material:  

Ejtot σ=   then,  ( )pn
tot pne
E
j

µ+µ==σ    1.4.4  

An pure semiconductor has inpn == , 

therefore the dependence of σ function 

of temperature will have the same 

shape as intrinsic density of charge 

carriers function of temperature, as it 

is shown in Fig.1.11, if we neglect the 

temperature dependence of the mobility of charge carriers.  

The dotted line represents the conductivity of metals. Obviously, this figure represents just a 

qualitative plot of the conductivity. From this plot we can see the difference between metals 

and semiconductors: in semiconductors, the conductivity increases exponentially with the 

temperature, and at room temperature the conductivity of semiconductors is lower then the 

conductivity of metals. This property is used in a number of passive devices, for instance in 

thermistors.  

In the case of extrinsic semiconductors the equation 1.4.3. remains valid, but the density of 

charge carriers must be renamed in accordance with the semiconductor type.  

In the case of N type semiconductors the total current will be: 

 EE pnnnpntot epenjjj µ+µ=+=       
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and the conductivity in such semiconductors will be predominantly mediated by electrons, 

since  n p n Nn n n D>> ≈     ; . Therefore:  

     nDN eN µ≈σ     1.4.5. 

Correspondingly, for the P type semiconductors the total current will be:   

EE ppnppntot epenjjj µ+µ=+=       

and the conductivity in such semiconductors will be predominantly mediated by holes, since 

Appp Np  ;   np ≈>> , therefore:  

     pAP eN µ≈σ     1.4.6. 

Diffusion. If there is a density 

gradient of charge carriers in a 

semiconductor’s region (see 

Fig.1.12), the carriers in the 

densely populated region will 

tend to migrate towards the 

depleted areas. Therefore, a 

carrier diffusion current will occur. At thermal balance, the motion of charge carriers (in our 

example electrons) is random. Then, depending on the density of electrons on each side of 

the section through the semiconductor at xo , the number of electrons which move through the 

plane at xo, in the mean free time (the time between two collisions) will be different. The 

number of electrons passing from right to left, through  the plane x0 is:  

[ ] S
l

xnlxnN LR ×⋅++=→ 2
)()(

2
1

00    1.4.7. 

whereas the number of electrons that pass from the right to the left of the same plane is,  
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[ ] S
l

xnlxnN RL ×⋅+−=→ 2
)()(

2
1

00    1.4.8. 

where l  is mean free path, which it is assumed to be the same for both carriers, hence most 

of the collisions occur with the lattice, its defects or impurities, and therefore is independent of 

the carrier density. Factor  
2
1

 is given by the equal probability for the movement from right to 

left or from left to right.  

Then the total number of electrons, which pass through this plane, is the difference between 

equations 1.4.8 and 1.4.7:  

[ ] Sl
dx
dn

SllxnlxnNNN
x

LRRLT ×⋅




−=×⋅+−−=−= →→

2
00

0
2
1

)()(
4
1

  1.4.9. 

This movement of charge carriers creates a current that has the density  

dx
dn

eD
dx
dnll

e
S

eN
S
Q

S
I

j n
T

Dn
=⋅=

−
===

2τττ
     1.4.10.  

where the constant D is the so called “diffusion constant”. Using a similar demonstration we 

can find the current density of holes:  

dx
dp

eDj pDp
−=      1.4.11.  

The minus sign is determined by the gradient of charge density, which is negative and, at the 

same time, by the charge of the hole e , which is taken as positive.  

Generation and Recombination of charge carriers. The density of charge carriers can not 

build up indefinitely in time, because at the same time with the generation phenomena there 

are the recombination phenomena, which scale with the density of charge carriers. At thermal 

balance, the generation rate must equal the recombination rate.  
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 The recombination rate is proportional to the product of the densities of charge 

carriers:  

    00pn.ConstR ×=      1.4.12. 

In the case of P type semiconductor 
0p0A0 nn  ;  Np =≈  . Therefore equation 1.4.12 

becomes:  

    
n

p
pAn

0
n

nN.ConstR
τ

=×=     1.4.13. 

where nτ  is mean life time of minority carriers generated in excess.  

In the case of N type semiconductor 
0n0D0 pp  ;  Nn =≈  . Therefore equation 1.4.12 

becomes:  

    
p

n
nDp

0
p

pN.ConstR
τ

=×=     1.4.14. 

where τp is mean lifetime of minority carriers generated in excess.   

Then, if we have an excess of minority carriers, let that be in a P type semiconductor, from any 

reasons, we can find the time evolution of this excess:  

[ ] dtRGdp n ×−=   but 
p

n0
p

G
τ

=   and  
p

n )t(p
R

τ
=  then this relation can be written  

p

nnn 0
p)t(p

dt
dp

τ
−

−=  which is a first order differential equation, which has following solution:  

[ ] p
00

t

nnnn ep)0(pp)t(p τ
−

⋅−=−    1.4.9. 

The minority carrier excess has therefore an 

exponential decay in time, as shown in fig.1.13.  
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1.5. Equation of continuity (Law of charge conservation).  

Let there be an elementary volume in a 

semiconductor (see Fig.1.14). Inside this 

elementary volume we may have generation 

phenomena, that takes place at a rate g and 

recombination phenomena, at a rate r . In 

this volume enters the current I and goes out 

the current I+dI.  

In this case the balance equation for the time variation of total charge inside the elementary 

volume Sdx can be written as:  

dIeSdxg
eSdxp

t
p

eSdx
p

−+
τ

−=
∂
∂

        1.5.1.   

In the stationary case g
p

0dI  ;  0
t
p

p

0 =
τ

⇒==
∂
∂  , thus the equation 1.5.1.  becomes :  

   



 −µ−

τ
−

−=
∂
∂

dx
dp

DEp
dx
dpp

t
p

pp
p

0     1.5.2.   

where we replace the total current by its two components (drift current and diffusion current)   

   S
dx
dp

eDEepSjI ppt 



 −µ==   

Therefore, the final form of 1.5.2. equation becomes:  

   ( )
2

2

pp
p

0

dx

pdD
dx

Epdpp
t
p +µ−

τ
−

−=
∂
∂     1.5.6.   

Equation 1.5.6. represents the balance equation for minority p carriers in a N type 

semiconductor, because the density of minority carriers is sensitive to accidental variation of 
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charge density. For that reason we can replace p by pn . In a similar way we can find the 

equation for N type semiconductors:  

    
( )

2
p

2

n
p

n
n

ppp

dx

nd
D

dx

Endnn

t

n 0 −µ−
τ
−

−=
∂

∂
   1.5.7.   

The minus sign before the diffusion constant appears from the expression of diffusion current 

for electrons.  

 Particular cases of continuity equation.  Let there be a semiconductor of P type. The first 

particular case is based on the following simplifying assumptions: independence of density to 

distance (x axis) and null electric field. Accordingly, in the equation 1.5.6 we have:  

0   ;   0
x

pn ==
∂

∂ E   and the equation becomes:  

p

nnn 0
pp

t
p

τ

−
−=

∂
∂  which has the known solution [ ] p

00

t

nnnn ep)0(pp)t(p τ
−

⋅−=− , similar 

with 1.4.15. equation, plotted in the Fig.1.13  

The second particular case is: independence of the carrier density in time and null electric 

field:  

0   ;   0
t

pn ==
∂

∂ E   and the equation 1.5.6. becomes:  

 
p

nn
2

2
p

0
pp

dx

pd
D

τ

−
=        

which has the solution pp
0

L
x

L
x

nn BeAep)x(p
−

+=−   

 where we define ppp DL τ=  which represents the so called “diffusion length” .  
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The constant A must be zero (since 

the carrier density cannot increase 

towards infinity with increasing x), 

therefore from boundary conditions 

we can find the value of constant B: 

0nn p)0(pB −=   

and now we can write the final form 

of this solution:  

( ) p
00

L
x

nnnn ep)0(pp)x(p
−

⋅−=−    

that has the graphical representation plotted in fig. 1.15.  

 

Chapter 2. P - N JUNCTION.  

2.1. Physical Phenomena in P-N Junction  

 The P - N junction is formed in a bulk semiconductor, which is considered to have the 

size larger then the diffusion length of charge carriers. Two different regions of doping are 

created in the structure, one of P type and other one of N type. The boundary between these 

two regions represents the P - N Junction.  

 Because this structure has a high gradient of majority charge carriers from P type 

semiconductor to N type semiconductor, diffusion phenomena will appear at the boundary 

between these two types of semiconductors. The majority carriers of P type, will diffuse to N 

type semiconductor whereas the majority carriers of N type will diffuse to P type 

semiconductor. But in N type semiconductor the holes are minority carriers, therefore a 

phenomenon of recombination between holes and electrons will occur. The same phenomena 

will occur in P type semiconductor between electrons and holes.  
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 Following diffusion and recombination, in both sides of the junction, a “depletion layer” 

will occur due to massive recombination. At the same time, there’s going to be a net electrical 

charging in the region, because in these regions we will have only the fixed charges, the ion 

charges. In this region an internal electrical field will appear and, of course, a voltage gradient 

(see Figure 2.1). In plot a) we plotted the charge density in depletion layer; in plot b) we 

plotted the intensity of internal electric field function of distance; in plot c) we plotted the 

voltage gradient function of the distance.  

 As we can see from plot (a), the charge conservation law can be written as:  

SLeNSLeN pDnA =     2.1.1. 

which can be further reduced to:  

pDnA LNLN =      2.1.2.  

To find the expression of electric field in the depletion layer of P type semiconductor we must 

apply the Gauss law for the any S surface perpendicular to the positive x axis.  

ε

−−
=−

S)xL(eN
S)x( nAE  
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resulting in:  

ε

+
−=−

)xL(eN
)x( pAE   

 2.1.3a.  

In the same way we can obtain the 

equation for the electric field in the 

direction of the negative x axis.:   

ε

−
−=−

)xL(eN
)x( pDE   

 2.1.3b. 

 

From the last two equations we can 

obtain the value of maximum electric 

field:   

)0( 
LeNLeN pDnA

max EE =
ε

−=
ε

−=

 

2.1.3c.  

The value of the barrier potential can be 

obtained simply by integrating the electric field over the length of the junction: 

∫
+

−

+
−=−=

p

n
0

L

L

npmax 
b 2

)LL(
dx)x( V

E
E        2.1.4.  

From equations 2.1.3c. and 2.1.2. we will obtain the final formula for the barrier potential:   

ε

+
=

ε

+
=

2
)LL(LeN

2
)LL(LeN

V npnAnppD
b0    2.1.5.  

All these formulas are calculated at thermal balance.  
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 Relation 2.1.5. is used to determine the diffusion length of majority charge carriers 

which diffuse in the region where they become minority charge carriers :  

   
ε

+

=
ε

+

=
2

)1
L

L
(LeN

2

)
L
L

1(LeN

V n

p2
nA

p

n2
pD

b0   2.1.6.  

From relations 2.1.6. and 2.1.2. we will obtain the final formula for the diffusion length:  

   
2
1

b

2
1

A

D
D

p
0

V

N
N

1eN

2
L





























+

ε
=

     2.1.7a. 

respectively,  

   
2
1

b

2
1

D

A
A

n 0
V

N
N

1eN

2L





























+

ε
=     2.1.7b.  

 The diffusion of charge carriers will continue until the electric field created by this 

charge displacement will build up to a value that will completely stop the charges on crossing 

the junction. Once this equilibrium has been attained, the total current of holes, or electrons, 

will be zero (assuming also thermal balance):  

   0
dx
dpeDepjjj ppppp dct

=−µ=+= E     2.1.8a 

   0
dx
dn

eDenjjj nnnnn dct
=+µ=+= E     2.1.8b.  

If we replace the electrical field with the voltage gradient 







−=

dx
dVbE  we can integrate these 

formulas. Let take as an example the formula 2.1.8a. :  
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dx
dpD

dx
dV

p p
b

p =







−µ   , therefore:  b

p

p dV
Dp

dp µ
−=   

The latter differential equation has the following solution:  

   .ConstV
D

pln b
p

p
+

µ
−=      2.1.9.  

From the boundary conditions, we will find the value of integration constant:  

 at pb pln. Const         0V ==  and at nbb pp      VV
0

==  ,  

then equation 2.1.9. becomes:  

   
0b

p

p V
D

pn epp

µ
−

=       2.1.10.   

But at room temperature we have the following relations, presented earlier in this chapter, for 

the density of charge carriers:  

kT

EE

vpkT

EE

vn

pvpFnVnF

eNp     ;     eNp

−
−

−
−

==  where, at thermal equilibrium, pn FF EE = . Then, 

the ratio between majority carriers and minority carriers can be written as:  

    kT

EE

n

p
nVpV

e
p

p
−

=      2.1.11.  

This ratio can be obtained from equation 2.1.10. too, but in order to have an equality between 

these two ratios it is required that:  

    
kT

eV

kT

EE
V

D
onp

0

bVV
b

p

p
=

−
=

µ
   2.1.12.  

From equation 2.1.12. we will obtain the following relations between carrier mobility, diffusion 

constant, and temperature:  
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e
kTD

p

p
=

µ
  2.1.13a. 

while for electrons, in a 

similar way,   

e
kTD

n

n =
µ

 2.1.13b. 

Relations 2.1.13. are 

the so called 

“Einstein’s relations” 

for semiconductors. 

The next conclusion 

extracted from equation 2.1.10. is np0 VVb EEeV −=  , which shows us that in a such structure 

( PN junction) the energy bands of semiconductor are broken or shifted at the level of the 

junction, in order to have the same Fermi level on both sides of the junction (see Figure 2.2) at 

thermal balance.  

 From equations 2.1.11. and 2.1.12. we can obtain the formula for the barrier potential 

(which matches the maximum of the voltage gradient):  

  
2
i

DA

n

p
b

kT

eV

n

p

n
NNln

e
kT

p

p
ln

e
kTVe

p

p
0

0b

==⇒=    2.1.14.  

The ratio TV
e
kT

=  is the so called “thermal potential”, and at room temperature has the 

value: 

VT  = 0.026 Volt ( )K300T 0= .  
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2.2. The Current-Voltage Characteristic for the P - N Junction.  

 The density of charge carriers must be a continuos function over the whole length of the 

semiconductor (see figure 2.3). We also determined, in chapter 2.1., that the diffusion length 

of majority charge carriers, which diffuse through the junction, depends on the square root of 

the barrier potential. Then, if we change this barrier potential by applying an external potential 

(voltage), we will modify these lengths and the height of barrier potential: 2/1
bn,p KVL =  , where 

the height of barrier potential is 
2
i

DA
b

n

NN
ln

e
kTV

0
=  , at thermal balance. But the height of 

barrier potential can be written as extbb VVV
0

−= , where the convention for external 

potential is as follows:  

extext VV −=  if this is the so called “reverse biasing potential/voltage” (the positive 

electrode of external source is connected to the N type semiconductor);  

extext VV +=  if this is the so called “forward biasing potential/voltage” (the positive 

electrode of external source is connected to the P type semiconductor).  
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The changes induced by the external voltage to the length of “depletion region”, the height of 

“barrier potential” and the currents which flows through the junction are presented in Fig. 2.7.  

 Now, as you can see in figure 2.4, we can not change the dependence of density 

charge carriers function on the x axis. Then, at forward polarisation, at the new diffusion length 

Lp there will be an injection of minority charge carriers in the N type semiconductor, resulting 

in a  carrier density 

different from the 

one at thermal 

balance (a similar 

process will take 

place in the P type 

semiconductor). 

Now, if we take the 

origin of X axes on 

the boundary of 

depletion region, we 

will be in the conditions of the “equation of continuity” particular case 0
t 
p 

  ;  0 =
∂

∂
=E  , 

where the solution is:  

  [ ] p
00

L
x

nnnn ep)0(pp)x(p
−

⋅−=−      2.2.1.   

Then the diffusion current that will be established can be written as:  

  
[ ]

p

L
x

nnp
pp L

ep)0(peD

dx
dp

eD)x(j
p

0

−

⋅−
=−=    2.2.2  

taking into account the equation 2.2.1.  
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A similar expression will result for the electron component of the current. But the density of 

minority charge carriers can also be written as:  

  

( )
kT

eV

n
kT

VVe

p
kT

eV

pn

ext

0

ext0bb

epepep)0(p ===

−
−−

   2.2.3.  

Therefore the final formula for the current given by holes being:  

  p
0

ext

0

L
x

n
kT

eV

n
p

p
p epep

L
eD

)x(j
−

⋅













−=     2.2.4  

while for electrons it will be:  

  n
0

ext

0

L
x

p
kT

eV

p
n

n
n enen

L
eD

)x(j
−

⋅













−=     2.2.5   

The total current is the sum of 2.2.4 and 2.2.5. But this current does not depend of the X 

abscissa. Then we can compute this current at x=0   

 












−












+=+==

=
1e

L
neD

L
peD

)x(j)x(j.constj kT
eV

n

pn

p

np
0xnpt

ext
00  2.2.6  

If we multiply the equation 

2.2.6 with the cross area of 

the junction, we will obtain the 

current-voltage characteristic 

or so called “Volt-Ampere 

characteristic” of the ideal 

diode:  

 














−= 1eII kT

eV

0

ext

       2.2.7.  
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The plot of relation 2.2.7 is given in Fig 2.5, where the negative current axis has been 

magnified several orders of magnitude with respect with the positive axis.  

The current I0 is the so called the “saturation current” or “reverse current” through the junction. 

The value of this current depends on the parameters of the crystalline lattice and temperature. 

For Silicon, values of nanoampers are common, and for Germanium lattice, values of 

microampers are common for the saturation current. This current is mediated by the minority 

carriers, and its expression can be determined from equation 2.21. :  

   S
L

neD
L

peD
I

n

pn

p

np
0

00














+=      2.2.8.   

The opening potential of the diode, Vγ   , is 

defined as the forward biasing voltage for 

which the current is 1 µA.  

In practical applications and circuit analysis, 

the plot of current function of forward biasing 

voltage is approximated by a linear 

dependence of the voltage on current above a 

threshold, as you can see in Fig.2.6.  
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2.3. Capacitance Effects in the P-N Junction.  

We determined in paragraph 2.1 that the diffusion length is proportional with the square root 

of the barrier potential, at thermal balance, as shown in the following formulas:   

2
1

b

2
1

A

D
D

p 00
V

N
N1eN

2
L





























+

ε
=  and 2

1

b

2
1

D

A
A

n 00
V

N
N1eN

2L





























+

ε
=   

If we biased the junction with a reverse potential, the height of barrier potential will 

increase to a value V V Vb b ext= +
0

 and the diffusion length will increase:  

( ) 2/1
extb

2
1

A

D
D

p VV

N
N1eN

2L
0

+





























+

ε
=   

equation which can be written, if multiplied by 

2/1

b

b

0

0

V

V













, in a new form : 

2/1

b

ext
pp

0
0 V

V
1LL














+=  

(we have considered, in the last two equations, the external voltage as negative).  

We can obtain, in a similar way, a mathematical formula for diffusion length of electrons:  

2/1

b

ext
nn

0
0 V

V
1LL














+= .  

Now if we define the dynamic capacitance of barrier potential as     

 
dV
dQ

CB =         2.3.1.   
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we can calculate its value in the following steps:  

dV
dL

dL
dQ

dV
dQC p

p
B ⋅==  , but SLeNQ pA=  , then SeN

dL
dQ

A
p

=  and 

p
D

A
A

p

L
N
N

1eN
dV

dL









+

ε
=   

 then:  

( )

2/1

b

ext
B

2/1

b

ext

npnp

D

A
p

B
0

0
000

V
V1C

V
V1

LL
S

LL
S

N
N1L

SC
−−














+=














+

+

ε
=

+

ε
=









+

ε
= 2.3.2.  

 The formula 2.3.2 gives us the value of barrier capacitance of the P-N junction, which 

looks like the formula of the capacitance of a plane capacitor. This capacitance is a 

characteristic of every diode at reverse polarisation.  

 This property is used in a class of special devices, called varicap1 diodes, which are 

used like capacitors 

whose capacitance 

is controlled by the 

applied reverse 

voltage.  

 The common 

value of this 

capacitance is lying 

in the range 5-20 

pF.  

                                                                 
1 VARIable CAPacitance  
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 Now let us see what will happen if we forward bias the P-N junction. In this situation we 

will have an injection of minority carriers in a region in which they are in excess (see fig.2.8 

which is similar with Fig.2.4)  

The area below the curve, which describes the density of excess minority carriers in neutral 

region, will represent the amount of charge injected in these regions. From the equation of 

continuity we will obtain:  

( ) pp
00

L
x

nn
L
x

nnnn e)0(P)x(Pep)0(pp)x(p
−−

=⇒⋅−=−     2.3.3.  

Then, the amount of charge injected in neutral region of N type semiconductor is:  

 pn

0
0

L
x

npn L)0(eSPe)0(eSPLdx)x(eSPQ p =⋅−==

+∞
∞+ −

∫   2.3.4.  

The dynamic capacitance is defined by the formula 2.3.1, therefore the capacitance can be 

written as:  

  
dV

)0(dP
eSL

dV
dQ

C n
pD ==       2.3.5  

Now, if we take into account only the hole component of the total current which flows through 

the junction, i.e. p
p

p
n

p

np
p I

eSD

L
)0(P

L

)0(PeSD
I =⇒=  , we can calculate the derivative of Pn ( )0  

function of voltage:  

  
dV

dI

eSD

L

dV
)0(dP p

p

pn ⋅=       2.3.6.  

Now if we replace the expression 2.3.6 in the equation 2.3.5 , we will find the value of the so 

called "diffusion/storage capacitance of holes" :  

  
dV

dI

D

L
C p

p

2
p

Dp
⋅=        2.3.7.   
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In a similar way we can calculate the "diffusion/storage capacitance of electrons":  

  
dV
dI

D
L

C n

n

2
n

Dn
⋅=        2.3.8.  

The value of this capacitance is higher than the barrier capacitance. Values of 100 pF, or 

more, are common for this capacitance.  

2.4. Dynamic resistance of the diode.  

 We can define, at forward bias of P-N junction, the dynamic resistance by next formula:  

  
dV
dI

g
r
1

d
==        2.4.1.  

The ideal diode equation can be approximated, at forward bias voltage, by:  

  T

extextext
V

V

0
kT

eV

0
kT

eV

0 eIeI1eII =≈












−=     2.4.2.  

Then the equation 2.4.1 becomes:  

  
TV
I

g =         2.4.3.   

By looking at Figure 2.9, you can get a 

feeling of what is representing this 

"conductance" on the plot I function of V : 

 The slope of the tangent line in the 

point "I" to the curve which represents the 

current through diode function of biasing 

voltage, is the characteristic "conductance" 

for the diode at current "I".  

 The "conductance" is defined as the inverse of "resistance", as in equation 2.4.1.   
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2.5. The Zener Diode.  

In the equation of ideal diode 















−= 1eII T

ext
V
V

0  , 

the saturation current is an important parameter of the diode and has the following 

expression: 







+=

N

pN

P

nP
0 L

neD

L

peD
SI 00 . As you can see, this current is function of minority 

charge carrier density, which is a constant at a given temperature.  

Since 
D

2
i

n N
n

p
0

=  and 
A

2
i

p N
n

n
0

=  , the expression of saturation current becomes:  
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



+=  2.5.1.  

but the diffusion constants are inversely proportional with the temperature, then we can rewrite 

2.5.1 in the final form:  

  T

0G

V

V

2
00 eTKI

−

×=        2.5.2.  

 

Then, for constant temperature we expect to have constant current. In practice, this formula 

holds only for moderate reverse voltages (see Fig.2.9).  

While increasing the reverse bias voltage 

applied to the diode, the current is constant 

up to a threshold voltage, called the 

“breakdown voltage”. For voltage values 

larger than breakdown voltage, the 

saturation current increases abruptly. This 

behaviour of  the saturation current may have two different origins:  

 



 35 

 - the avalanche multiplication of minority charge carriers (classical phenomena) which 

can occur at voltage higher than 100 V ; 

 - the tunnelling of bounded charge, through the barrier potential, from valence band of 

P type semiconductor, directly to valence band of N type semiconductor (quantum 

phenomena), which can occur at voltage lower than 100V.  

 Irrespective of the actually breakdown mechanism, the diodes which work in this 

regime are called “ZENER diodes”, and are generally used in voltage stabilisation.  

2.6. The Tunnel 

Diode.  

 The tunnel diode 

is a special device that 

works at very high 

frequencies (more than 

500Mhz). This diode is 

made in a form of a P-

N junction with a heavy 

doping of both 

semiconductors (NA 

and N
D
 higher than 

10
19

cm
-3
). In these 

conditions the width of 

the barrier potential is 

very short, and the 

Fermi level, at thermal balance, lies in the valence band of P type semiconductor and, 

correspondingly, in conduction band of N type semiconductor (see Fig.2.10)   
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Figure caption:  

A)  Thermal balance;  

B)   Forward biasing voltage (tunnelling current is increasing) 

C)  Forward biasing voltage, higher than in the case B (maximum tunnelling current)  

D)  Forward biasing voltage, higher than in the case C (tunnelling current is zero)  

The current-voltage characteristic is shown in Fig.2.11. We can see in Fig.2.11 four different 

regions of this plot.  

Region 1: here the reverse current increases rapidly, because all electrons which are in 

valence band of P type semiconductor are tunnelling through the barrier potential because 

they “see” unfilled states in the conduction band of N type semiconductor, upper than the 

Fermi level.  

Region 2: At a small forward 

biasing voltage begins a 

movement of majority carriers 

over the barrier potential, like in 

a normal diode, but this current 

is in concurrence with the 

“negative current” generated by 

the “tunnelling effect”. When the tunnelling current becomes predominant, the current through 

the diode moves in region 3 (case B in Fig.2.10) 

Region 3: The tunnelling current is higher than the “normal” current, therefore the current 

through the diode decreases with the bias voltage increase, until a minimum value (at the end 

of region 3), at which the tunnelling current is maximal (case C in Fig.2.10). In this region the 

diode is characterised by a “negative dynamic resistance” (the slope of this part of the 

characteristic is negative, as you can see). 
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Region 4: With the increasing of the voltage, the energy bands of N type semiconductor are 

shifted more to upper energies, and the region with free electrons from conduction band of N 

type semiconductor begins to look at a region of forbidden band, then the tunnelling effect 

decreases, until this effect vanishes (case D in Fig.2.10.) and all the current through the diode 

will be a normal forward biasing current.  

 

 

 

 

 

 

 

 

 
 
 
 

Chapter 3. The Bipolar Junction Transistor (BJT).  

3.1. Phenomenological description of Bipolar Transistor.  
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The Bipolar Junction Transistor (BJT)2 or simply Junction Transistor, has the structure shown 

in Fig.3.1.  

 

As you can see in Fig. 3.1, the currents which flow through the bipolar transistor, in the 

conditions of forward biasing  of E-B junction and reverse biasing of C -B junction, are:  

NEPEE III +=  ; 
0CPCC III +=  ; CEB III −=   

We can define the following "transistor's constants" :  

The efficiency of emitter: 
E

PE

I
I

=γ  (the ideal value of this constant is 1)  

                                                                 
2 Invented by Shockley 
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The carrier factor: 
PE

PC*

I
I

=β  (the ideal value of this constant is 1)  

The current gain : 
E

CC

I

II
0

−
=α  (the ideal value of this constant is 1)  

From the last relation we can find the "transistor's equation"  

  
0CEC III +α=      3.1.1. 

In practice the current gain constant has values among 0.95 - 0.999 . Then we can use the 

approximate relation :  

  EC II α≈        3.1.2. 

Like in the case of P-N junction, such a device must be built in the same piece of 

semiconductor material, in order to assure the continuity of the crystalline lattice. Any defect in 

the lattice would greatly impair carrier mobility and would distort the energy bands. The 

mandatory conditions for having such relations between currents, then to have a “transistor 

behaviour”, are:  

- the doping of Emitter is higher than the doping of the Base, i.e. )B(D)E(A NN >>   

- the base is thin enough that the 

diffusion length of minority charge 

carriers which are injected in Base is 

higher than the width of neutral region of 

the Base, i.e. wLp >   

In Fig. 3.2 we represented the case of a 

NPN transistor, biased in the active 

regime (Emitter junction forward biased  
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and Collector junction reverse biased). In this case all currents have inverse directions 

compared to the case of PNP transistor. Now, if we take into account the equation 3.1.2., we 

can approximately calculate the power gain of this device.  

Through the junction of emitter, characterised by dynamically resistance Ω< 10rd  flows the 

current IE . Then the input power, dissipated on this junction is  

 2
dEin rIP ≈   

The output power is the power dissipated on collector junction, which is reverse biased, then it 

is characterised by a higher resistance RC > 104Ω . Then the output power is approximately  

 2
CCout RIP ≈     

One has to note that these values are not the actual total power dissipated on the emitter and 

collector, since rd and RC are not the static resistances, but the dynamic ones, related to the 

AC signal. Therefore Pin and Pout will be AC signal powers at the input and output. The power 

gain is going to be:  

4
2
dE

2
CE

2
dE

2
CC

in

out 10
rI
RI

rI
RI

P
PG ≥

α
≈==   

Now, from the last relation we can understand why this device was called "trans-resistor" or 

"transistor" . This device makes possible the transfer of a current which flows through a region 

with low resistance, in a region with high resistance, without a sensitive modification of the 

current.  

3.2. The analytical equations of transistor’s  currents.  

The emitter current has two components, as we saw in last section. The electron component 

of this current must have the same expression like the electron component of an ideal diode, 

therefore:  
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














−= 1e

L
nAeD

I T

E

0
E

V
V

n

pn
n      3.2.1.  

In this equation we will annotate the diffusion length of electrons in neutral region of emitter by 

LE  and the density of minority charge carriers in emitter by nE0 . With these new annotations, 

formula 3.2.1 becomes:  

 















−= 1e

L
nAeD

I T

E

0
E

V
V

E

En
n      3.2.2.  

To compute the hole component of the emitter current, we must take into account that this 

current is a diffusion current in a neutral base region, where it is a minority carrier current. 

Therefore, the expression of this current is very much alike the formula of a diffusion current:  

 
dx
dp

eDj ppE
−=        3.2.3.  

But already we know the expression of the density of minority charge carriers injected in a 

neutral region:  

 p
0

L
x

nn Kep)x(p
−

=−       3.2.4.  

Because the transit of these charge carriers through the neutral region of the base is fast, due 

to the small thickness of the base, ( )pLw < , we can approximate the equation 3.2.4. by:  

 xKKp)x(p 21nn 0
+=−       3.2.5.  

Then, by replacing 3.2.5 in 3.2.3., we will obtain :  

 2pp KeDj
E

−=        3.2.6.  

We can obtain the values of constants K1 and K2 from the boundary conditions of equation 

3.2.5:  

at x=0 , we have 
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  1nn Kp)0(p
0

=−        3.2.7. 

and at x=w , we have:  

  wKKp)w(p 21nn 0
+=−     3.2.8.  

But the density of the injected carriers at x=0, which represents the boundary between the 

space charge region of emitter junction and neutral region of the base, is given by:  

  T

E

0
V

V

nn ep)0(p =      3.2.9.  

Now, if we replace the 3.2.9. in 3.2.7. we will obtain the value of the K1 constant:  

  















−= 1epK T

E

0

V
V

n1     3.2.10.  

In the same way, taking into account that:  

  T

C

0
V

V

nn ep)w(p =   

we will obtain from equation 3.2.8. the value of the K2 constant:  

  
w

1ep1ep

K

T

E

0
T

C

0
V

V

n
V

V

n

2
















−−
















−

=   3.2.11.  

Now, if we replace the value of K2 constant, given by 3.2.11. in 3.2.6. equation we will obtain 

the value of holes current which flows through the emitter junction:  

 

 
w

1ep1ep

AeDI

T

E

0
T

C

0

E

V

V

n
V

V

n

pp
















−−
















−

−=      3.2.12.  

Finally, the total current which flows through the emitter can be expressed as:  
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00
EE
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V
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V

np

E

En
npE  3.2.13.  

In the same way we can obtain the expression for the collector current, which is given by:  

  
0C CpC III +=         3.2.14.  

The saturation current is like the electronic component of the current of an ideal diode:  

 















−−= 1e

L
neAD

I T

C

0
0

V
V

C

Cn
C        3.2.15.  

Now, if we neglect the recombination phenomenon in the neutral region of the base, i.e. 

I Ip pE C
≈  , the sum of 3.2.15. and 3.2.12. equations will give us the expression for collector 

current:  
















−+
















−








+−=+= 1e

w
peAD

1e
w

peAD
L

neAD
III T

E

0T

C

00
0C

V
V

npV
V

np

C

Cn
CpC  3.2.16.  

The equations 3.2.13. and 3.2.16. represent the analytic expressions for currents which flow 

through the transistor.  

These relations can be written in condensed forms such:  

 
















−+


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






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




−=
















−+
















−=

1ea1eaI

1ea1eaI

T

C

T

E

T

C

T

E

V

V

22
V

V

21C

V

V

12
V

V

11E

      3.2.17.  

where the coefficients aij are:  

w

peAD

L

neAD
a 00 np

E

En
11 +=  ;  

w

peAD
a 0np

12 −=   
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w

peAD
a 0np

21 =  ; 









+−=

w

peAD

L

neAD
a 00 np

C

Cn
22    3.2.18.  

The relations 3.2.17. are so called "Ebers-Moll" relations.  

 

3.3. Ebers-Moll Model of Bipolar Transistor.  

Taking into account the equation 3.1.1. and the general equation for ICo, the reverse current of 

the collector towards the base junction, the general equation 3.1.1 can be written as:  

)1
V
V

(expIII
T

C
CoENC −+α=        3.3.1.  

where αN is the current gain under normal conditions of biasing (emitter to base junction 

forward biased and base to collector junction reverse biased). Now, if we take the transistor 

like an reversible device and reversing the biasing, we can rewrite the 3.3.1. as:  

)1
V
V

(expIII
T

E
EoCRE −+α−=        3.3.2.  

where αR is the current gain in reverse conditions of the biasing, having lower value than αN 

because the transistor doesn’t 

work in normal regime.  

The 3.3.1 and 3.3.2 relations can 

be used to describe a simple 

model of bipolar transistor, named 

“Ebers-Moll model”, shown in 

Fig.3.3. where VE is the forward 

bias of the emitter and VC is the 

reverse bias of the collector. Then 

the first terms of 3.3.1 and 3.3.2 

relations are represented in the Ebers-Moll model as constant current generators and the 

seconds terms of these relations are represented by the currents which are flowing through 

two equivalent diodes, first one biased with VE, and the second biased with VC. Now, if we 

take into account that the current given by constant current generator αα RIC is lower than the 

current given by the constant current generator αα NIE , and the reverse current of the equivalent 

diode of the collector junction is very small in comparison with the current given by forward 
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biasing equivalent diode of the emitter junction, 

the Ebers-Moll model can be simplified as in 

Fig.3.4.  

Using the model showed in Fig.3.4, the 

demonstration of the power gain given at the 

beginning of this chapter becomes even easier to 

understand.  

 

3.4. Static Characteristics of Bipolar Transistor.  

 The most common connections for the bipolar transistor are the "Common Base 

Connection" and the "Common Emitter Connection", named this way because the Base, 

respectively the Emitter, are connected to the common connection between input and output, 

connection which is conventionally taken as ground.  

In Fig. 3.5 are shown these two basic connections of bipolar transistor. Each one is 

characterised by two input connections and two output connections. Then we have four 

terminals, of which two of them connected to the common ground. For that reason, such a 

device is named a “four-terminal network”. The behaviour of such device can be 

characterised by the input and output currents and voltages. Usually we take as independent 
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variables the current of input and the voltage of output. In this way we can write the dependent 

variable (voltage of input and current of output) function of the independent variable.  

)V,I(fI);V,I(fV CBECCBEBE 21 ==  will be the relations for CBC four-terminal 

network, and  

)V,I(fI);V,I(fV CBE2CCBE1BE ==  will be the relations for CEC four -

terminal network.  

 

In figure 3.6 you can see such characteristics for CBC circuits, and in figure 3.7 for CEC 

circuits.  
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The way we defined the current gain for CBC connection, the relation between the input 

current and the output current is provided by the following equation:  

 
0CEC III +α=      3.4.1.  

This relation is so called "the device equation" for the transistor in CBC connection.  

In the case of CEC connection the "device equation" can be found by replacing the emitter 

current by : BCE III +=  . In this case the equation 3.4.1. becomes:   

 ( )
0

1 CBC I II +β+β=     3.4.2.  

where 
α−

α
=β

1
 is the current gain in the CEC connection. A typical value for β   β  is 100.  

The biasing circuits for bipolar transistor.  

 In the case of CBC connection 

we may have a biasing circuit 

comprising two d.c. sources, like in 

Fig. 3.8  

In the transistor’s active region, the 

junction E-B is forward biased and the 

junction C-B is reverse biased. Under 
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the assumption VEB>>kT/e=VT  , we can infer that the emitter current is higher than the reverse 

collector current IC0 , then we have in a wide range of values for the IE the relation  

.constVEB ≅       3.4.3.  

and the equation 3.3.1. becomes   

EEC III ≅α≈       3.4.4.  

The equations 3.4.3. and 3.4.4. represent the "device equations". Now we will write the 

"circuit equations", which will be the based on second Kirchhoff’s law for the input and output 

circuits:  

 EEEBEE RIVV +=     3.4.5.  

 CCCBCC RIVV +=     3.4.6.  

From 3.4.5. we can calculate the value of IE for a given circuit:  

 .const
R
V

I
E

EE
E =≅     3.4.7.  

assuming that VEE>>VEB .  

Then, if we take into account the relation 3.4.4. , we can assert that .constII CE =≈  

The equation 3.4.6. 

represents the so called 

"load line equation", from 

which we can calculate the 

bias voltage of the C-B 

junction.  

 

 

 

 CCCCCB RIVV −=     3.4.8.  
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The intersection between the load line and the output static characteristic corresponding to 

the emitter current calculated by equation 3.4.7. represents the so called "static operating 

point" for the transistor. This point is marked in fig.3.9 with a Q letter.  In this point the bias 

voltage for C-B junction is provided by equation 3.4.8.  

 Equations 3.4.7. and 3.4.8. prove that the CBC connection is the most stable 

operating configuration of bipolar transistor. This is provided by the fact that we 

control the output current IC with a current IE , higher than the residual current of the 

collector and the gain current αα  is approximately constant, having values in the range 

0.98-0.99.  

 The circui t for the CEC connection, which is by the way the most usual circuit, is shown 

in Fig. 3.10. The biasing circuit is commonly called "voltage divider biasing" or “universal 

biasing” circuit, because the resistors RB1 and RB2 provide the biasing of E-B  and C-B 

junctions using a single power supply.  

 In this configuration, the situation is quite different as compared to the CBC connection 

because the current gain ββ   may have a wide dispersion over individual transistors. If αα  is 

0.98, ββ   is 49 while if αα  is one percent higher, 0.99, ββ   is 99.  

 For this configuration the "device equation" is given by eq. 3.4.2, but usually for Silicon 

transistors is used the simplified formula  

 BC II β≅       3.4.9.  

The voltage divider biasing circuit showed in Fig.6 has an equivalent d.c. circuit which is used 

to find the circuit equations. To obtain this equivalent circuit we must use next steps:  

1. We will assume all capacitors having "infinite resistance";  

2. We will apply the "Thevenin's theorem" for the voltage divider biasing circuit; 
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In this case the equivalent circuit of Fig.3.10 is the circuit showed in Fig.3.11. 

Now if we write the second Kirchhoff’s law for input and output circuits of Fig.3.11, we will find 

next equations:  

 EEBEBBBB RIVRIV ++=     3.4.10.  

 EECECCCC RIVRIV ++=     3.4.11.  

where 
2B1B

2B1B
B RR

RR
R

+
=  and 2B

2B1B

CC
BB R

RR
V

V
+

=  as result from Thevenin's 

theorem. The equations 3.4.10 and 3.4.11 are the "circuit equations" for CEC connection. If 

the resistance RE=0 , from relations 3.4.10 we will find that  

 
B

BEBB
B R

VV
I

−
=          3.4.12.  

and using relation 3.4.9,  results that: 

 
( )

B

BEBB
C R

VV
I

−β
=         3.4.13.  

But β  β  may have a wide dispersion, then for a given base current we can have a lot of output 

currents. In this case the "operating point" of the transistor is not stable. To prevent this 
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situation it is necessary to have the condition 0≠ER . In this case the equation 3.4.12. 

becomes:  

 
)1(RR

VV
I

EB

BEBB
B

+β+

−
=         3.4.14.  

(in equation 3.4.14 we take into account that IE=IC+IB=IB(ββ +1), if we used the relation 3.4.9.)  

 In this case equation 3.4.13. becomes:  

 

 
( )

)1(RR
VV

I
EB

BEBB
C

+β+

−β
=         3.4.15.  

Now, if we have met the criterion  

 ( ) BE R1R >>+β  ,       3.4.16.  

the output current IC becomes independent of ββ , then the "operating point" becomes 

stable, and the equation 1.4.15. becomes:  

( ) ( )
.const

R
VV

)1(R
VV

)1(RR
VV

I
E

BEBB

E

BEBB

EB

BEBB
C =

−
≈

+β

−β
≈

+β+

−β
=   3.4.17.  

 

Because the current gain in CEC is large, we can approximate ββ +1 ≈≈  β .  β .    
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The equation 3.4.11 represents the "load line equation" for CEC of bipolar transistor. In 

Fig.3.12 you can see the output characteristics for CEC of the bipolar transistor and the 

operating point, obtained in the same way like in the case of CBC.  

3.5.The stabilisation of working conditions for bipolar transistor.  

 The output current of CBC or CEC circuits is the collector current. The value of this 

current is function of temperature by his dependence on: saturation collector current IC0 , bias 

voltage of the E-B junction VBE and the current gain ββ  .  

 Then we can write that  

  ( )β= ,V,III BE0CCC      3.5.1.  

where each variable depends on temperature following a common law:  

( )21 TTa
00C0C e)T(I)T(I −⋅=   

where T0=3000K; the value of the constant a depends on the nature of the semiconductor, 

being higher for Germanium which has the gap energy (width of the forbidden band) lower 

than Silicon.  

( ) 






 −
+⋅β=β

K
TT

1T)T( 21
0   

where the value of constant K is 100 for Germanium and 50 for Silicon.  

C/mV2.2
T

V 0BE −=
∂

∂
  

The strongest dependence on temperature is for the saturation current, because this current is 

provided by minority carriers, and the their concentration depends exponentially on 

temperature.  

Now, if we take the derivative of expression 3.5.1. with respect to temperature, we will obtain 

the following equation:  
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  3.5.2.  

where the coefficients of the temperature derivatives are  the so called “sensitivity factors”:  

I
0C

C S
I
I

=
∂

∂
 ; U

BE

C S
V
I

=
∂

∂
 ; β=

∂β

∂
S

IC
  

The sensitivity factor of current S I is the most important, its minimisation leading to the 

minimisation of all other factors.  

In the aim to find the expression of SI , we must calculate the next derivative:  

[ ]0CBC
C

I)1(II
I

+β+β=
∂

∂
  

from which we can obtain : 

 

C

B
I

I
I

1

1
S

∂

∂
β−

+β
=    3.5.3.  

The value of the derivative 
C

B

I
I

∂

∂
 depends on the type of 

circuit used for biasing the transistor.  

The simplest biasing circuit is shown in figure 3.13. The 

base current is given by the next relation : 

B

BECC
B R

VV
I

−
=  , which can be found by writing the second Kirchhoff's law for the input 

circuit. Because VCC >> VBE we can ignore the value of VBE in the expression of IB, therefore it 

results that the base current is constant, and, as consequently, its derivative with respect to IC 

is zero. In this case the equation 3.5.3. becomes   

1SI +β=   
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 which is a large value, therefore the sensitivity with the temperature is very high. This circuit 

has a bad stability function of temperature.  

A good stability with the temperature has the circuit shown in Fig.3.14. 

 

Using the second Kirchhoff  law, we can write the next 

equation: 

( ) BEBBBCCCC VIRIIRV +++=  from which, 

ignoring the VBE  voltage because it is much smaller than VCC 

, we will find:  

BC

C

C

B
C

BC

C
B RR

R
I
I

I
RR

R
I

+
−=

∂

∂
⇒

+
−=   

Than, if we replace this derivative in 3.5.3. equation, we will find:  

C

BC

BC

C
I R

RR

RR
R

1

1
S

+
≈

+
β+

+β
=  which has values in the range 3 to 10, depending on 

the values of resistors used in the circuit. This is a low sensitivity, resulting in a good stability 

of the circuit with respect to the temperature variations. In the particular case RB=0 we get the 

best sensitivity value, SI=1, but in this case the transistor has the C-B junction shunted. 

However, such a circuit is used to stabilise the second transistor. This method of stabilisation 

is called "current mirror stabilisation".  

The best value, that means the lowest value for SI , is obtained in the case of voltage divider 

biasing circuit shown in Fig.3.15 
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From the d.c. equivalent circuit, discussed earlier in this chapter, 

we can find the value of IB  as a function of the IC current  

C
EB

E
B I

RR
R

I
+

−=  . 

Then the expression 3.5.3. becomes:  

E

BE

BE

E
I R

RR

RR
R

1

1
S

+
≈

+
β+

+β
=

  

which may have typical values in the range 2 to 6.  
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Chapter 4. Small Signals Operating Regime.  

Notation Conventions for the Dynamic Regime.  

In the dynamic regime we have in our circuit both currents and voltages to look at. In 

general currents and voltages are designated by capital letters I or V having a subscript which 

represents the letter characteristic for the transistor terminal (E for emitter, C for collector and 

B for base). The a.c. components are denoted by italic small letters having small letters as 

subscripts, designating transistor terminal, as in the d.c. case (e for emitter, c for collector and 

b for base). Then, the d.c. collector current is noted by IC and the a.c. collector current by ic .  

 The sum of both components is denoted by italic capital letters as you can see in the 

following example:  Ic = ic + IC  

In figure 4.1 you can see a graphical analysis of the common emitter amplifier in 

dynamic regime. The input signal is applied in the base of the transistor, which has the static 
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operating point Q given by the intersection of load line with the static characteristic for the 

base current 60 µA. This case will result in a total output current/voltage signal Ic and Vc as a 

function of time t that can be seen on lower left panel of fig.4.1.  

As you can see in Fig.4.1, a small input signal (current or voltage signal) is amplified 

by the transistor. The usual unit for the gain of an amplifier is the decibel, defined as:  

  Number of decibels = 10log Pout/Pin  

If the input and output power of an amplifier is measured on the same resistor, the 

definition for the decibel becomes:  

 Number of decibels = 10log Pout/Pin = 10log (vout)2/(vin)2 = 20logvout/vin  

But, in spite of not being technically correct, it has become customary to define the 

decibel voltage gain of an amplifier in terms of the voltage gain, even that the input and output 

resistances are not equals. Therefore, last formula becomes:  

  Decibel voltage gain = Gv = 20 log Av  

4.1 The Small Signals Model for Bipolar Transistor.  

The behaviour of four-terminal 

network, as a general class of 

circuits, can be characterised by 

linear equations only for small 

signals. This affirmation can be demonstrated using the Ebers-Moll equations of the 

transistor, written for total current (both components):  
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where Ie=IE + ie ; Ve= VE + ve and Vc=VC + vc according to convention adopted in the 

beginning of this chapter. For small signals, the amplitude of a.c. components is small enough 

to allow us to keep only the first order terms from the Taylor (power) series in which can be 

approximated the exponential of a.c. components. Let’s take as an example the first Ebers-

Moll equation:  
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Grouping the terms of d.c. and a.c. components we will obtain the following equation:  
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where the first two terms represent just the d.c. component of the emitter current and the next 

two terms represent the a.c. component of the emitter current.  

Now, by differentiating the above equation, we obtain:  

 

 cee vyvyi ∆+∆=∆ 1211      4.1.1. 
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Using a similar method, we can obtain the equation for small variations of the collector current 

given by the second Ebers-Moll equation:  

 

 cec vyvyi ∆+∆=∆ 2221     4.1.2.  

 

The equations 4.1.1. and 4.1.2. define the so called “admittance parameters”, determined 

using the next equations:  
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y  , which represents the “input admittance”  
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0

12
=∆

∆

∆
=

evc

e
v
i

y  , which represents the “reverse transfer admittance”  

 

  
0

21
=∆

∆

∆
=

cve

c
v
i

y  , which represents the “forward transfer admittance”  

  
0

22
=∆

∆

∆
=

evc

c
v
i

y  , which represents the “output admittance”  

 

The equivalent circuit described  by relations 4.1.1 and 4.1.2 is drawing in Fig.4.2  

 

This “four-terminal network” represent the equivalent circuit for CBC of the bipolar transistor 

using admittance parameters. As you can see, the equivalent input circuit of the transistor 

according to the equation 4.1.1. comprises the input admittance y11 and the constant current 

generator y12vc which represents the influence (feedback) of the output circuit to the input 

circuit. Similarly, the equivalent output circuit comprises the output admittance y22 and the 

constant current generator y21ve which represents the influence of the input circuit to the output 

circuit.  

In equations 4.1.1 and 4.1.2 we have taken as independent variables the input voltage v i and 

the output voltage vc, by writing the input current ii and the output current ic using linear 

relations allowed by the small a.c. signal approximation.  
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Another transistor model can be found by taking as independent variables the input and 

output currents. In this case the modelling parameters are “impedances”, defined by the 

following relations:  
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The equivalent circuit using impedance parameters is shown in Fig.4.3.   

 

As in the case of admittance parameters model, this four-terminal network which modelled the 

CBC of bipolar transistor, has an input circuit made by the input impedance z11 and a 

constant voltage generator z12ic, and an output circuit made by the output impedance z22 and 

a constant voltage generator z12ie.  

Then, the equations 4.1.3 and 4.1.4 will approximate the behaviour of the bipolar transistor:  

 cee izizv ∆+∆=∆ 1211         4.1.3.  

 cec izizv ∆+∆=∆ 2221        4.1.4.  

 



 61 

Now, if we take as independent variables the input current and the output voltage, like in the 

case of static characteristics, the variations of the input voltage and output current can be 

written as follows: 

  oii VhIhV ∆+∆=∆ 1211     4.1.5.  

  oio VhIhi ∆+∆=∆ 2221     4.1.6. 

where parameters hi j , named hibrid parameters, are defined by following relations:  
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∆ .
 represents the “input impedance”. Usually is noted by hi . 

h
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∆ .
 represents the “reverse transfer factor”. Usually is noted by hr .  
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∆ .
 represents the “forward transfer factor”. Usually is noted by hf .  

h
I
V

o

o I cti

21 =
=

∆

∆ .
 represents the “output admittance”. Usually is noted by ho .  

All these factors have a second index to characterise the transistor’s connection; the letter “e” 

for CEC of the transistor, “b” for CBC of the transistor, respectively “c” for CCC of the 

transistor.  

Equations 4.1.5 and 4.1.6 allow us to imagine a new four terminal network for the bipolar 

transistor, which is most used in electronics. This circuit, named “hybrid parameters model of 

the transistor” is shown in Fig.4.4  
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As you can see, this circuit is a mixture between “impedance parameters” and “admittance 

parameters” circuits, for that reason being named “hybrid parameters model”.  

 

Typical values for hybrid parameters. 

Second  
index 
Parameter  
 

(CEC) 
 

e 

(CBC) 
 

b 

(CCC) 
 

c 

h i 1.1 x103 ΩΩ   10-100 ΩΩ  20-50 x103
ΩΩ  

h r 10-4  10-4 1 or less   

h f 100 
(medium) 

0.99 
(medium) 

100  
(medium)  

h o 10-5  ΩΩ − 1− 1  10-7 ΩΩ − 1− 1  10 – 103 ΩΩ − 1− 1  

4.2 General Characteristics of an Amplifier.  

 Every amplifier is characterised by voltage amplification Av , current amplification Ai , 

input impedance zi and output admittance yo . In order to be able to calculate these 

parameters it is necessary to transform the actual circuit in it’s a.c. equivalent. Here are two 

rules to be followed:  

• every capacitance is a short-circuit in a.c. 

• the d.c. biasing source is a short-circuit to the ground in a.c. 
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Let’s take the most usual amplifier circuit using transistors in practical applications, the 

Common Emitter Connection amplifier, showed in Fig.4.5.  

The equivalent a.c. circuit, taking 

into account the above rules, is 

shown Fig.4.6 . By dotted lines are 

represented in the circuit of Fig.4.5 

the input signal source (vg and Rg in 

the output circuit the load resistor 

(RL). Now, in fig.4.6 we must 

replace the transistor with its 

equivalent hybrid circuit, in this particular case with the hybrid circuit for the CEC transistor. It 

will result the final equivalent circuit, showed in fig.4.7.  

The resistor RB is the equivalent resistance of the voltage divider bias circuit (resistors RB1 

and RB2 in parallel connection).   

By definition, the current gain Ai 

is  

 
i

L
i i

i
A =  4.2.1.  

For a simplified calculation, in 

fig.4.7 we will take into account 

the load resistor as the equivalent resistor R ’
L=RCRL/(RC+RL), thus the fig.4.7 becomes fig.4.8.  
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Then the current gain is: 
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  4.2.2.  

The input impedance is defined by  

 
i

i
i i

v
z =            4.2.3.  

then, from fig.4.8 we can calculate this impedance by applying the second Kirchhoff’s law for 

the input circuit:  
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vhih
i
v

z Lireie
b

orebie

i

i
i +=

+
==       4.2.4.  

Now, we can calculate easily the voltage gain, which is defined by:  

 
i

o
v v

v
A =           4.2.5.  

then, in the same way used in last demonstrations, we will find:  
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v
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A ===         4.2.6.  

The last parameter which we must know is the output admittance (impedance). This is defined 

by the next relation:  
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This parameter is defined in condition of input signal source in shot-circuit (vg=0). Then  
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But from input circuit applying second Kirchoff’s Law we can write  
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and if we replace this expression in 4.2.8. we will find  
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−=         4.2.9.  

4.3. The Simplified Hybrid Circuit for Bipolar Transistor.  
 
For an CEC amplifier having an equivalent circuit as the one depicted in the figure below we 

found  earlier the following equations:  

 
Current gain 

(4.2.2)  

A
h

h R
i

fe

o e L

=
+1 '  

and input 

impedance (4.2.4.)  

z h h A Ri ie re i L= + '   

In the case where we have satisfied the condition h Roe L
' < −10 1  (in particular that means a 

maximum value for the load resistor of 104 ohms), the second term from the denominator of Ai 
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can be ignored and the current gain of the amplifier can be approximated by the hybrid factor 

hfe.   

 That means, from a practical standpoint of view, that in the hybrid model of the 

transistor, we can neglect the output admittance hoe .  

 Now, if we take into account the actual typical values for the hybrid parameters in the 

equation for the input impedance (hre=10-4 ; Ai=h fe=102 ; RL'=104-103 ; hie=103), we will see 

that the second term in the expression of input impedance can have values in the range 102-

10. In this case we can ignore this term versus the  first term which has a value 10 to 100 

times higher.  

 That means, from a practical standpoint of view, that in the hybrid model of the 

transistor, we can neglect the reverse transfer factor hre .  

 Taking into account these two approximations, the hybrid model of the transistor 

becomes more simple, like the circuit shown in Fig.4.9.  

In the case of the CEC amplifier, using the 

simplified  equivalent circuit in Fig.4.9, the general 

parameters of a common emitter amplifier are:  

Ai=hfe ; zi=hie ; yoe=0 ; Au=hfeRL'/hie  4.3.1  

The error in calculating these parameters, using the simplified hybrid model, is around 4%. 

This error is less than the dispersion in the values of commonly used resistors, which makes it 

acceptable.  

 



 67 

A special case of common 

emitter amplifier is the 

common emitter amplifier with 

emitter resistor. In this case the 

CE capacitor doesn’t exist. 

Then the equivalent a.c. circuit 

must take into account the 

presence of this resistor and 

Figure 4.6 becomes 4.6bis. 

Replacing the transistor now 

with his simplified hybrid circuit 

we will obtain figure 4.7bis.  

The current gain remains the 

same like for common emitter amplifier, but the input impedance and voltage gain will be 

dramatically changed.  

( ) ( )[ ]feEiebcbEbiei h1RhiiiRihv ++=+⋅+⋅=  and using the definition formula for 

input impedance we will obtain  

( )feEiei h1Rhz ++=   

which has a higher value than the value of common emitter impedance.  

Now, using the general formula for voltage gain we will obtain the new value of Av.  
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As you can see the voltage gain, in this case, doesn’t depend on the transistor performances, 

the amplifier having a stable voltage gain.  
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The simplified circuit shown in Fig.4.9 can be used too, for computing the parameters of any 

amplifier, independent of the type of the transistor connection. Let’s test that right now.  

4.4. Common Base Amplifier.  

In Fig.4.10 is depicted the Common Base 

Amplifier with only one biasing source +VCC . To 

obtain the equivalent c.a. circuit we must follow 

the same rules as in the general case.  

 

 

Using these rules we will obtain the equivalent  

a.c. circuit shown in Fig.4.11. If we replace the transistor with its simplified circuit from Fig.4.9, 

we will obtain the final equivalent circuit, shown in Fig. 4.12, from which we will be able to 

compute the general characteristics of this amplifier.  

Because ii=-ie=-(ib+ic) the current gain 

will be: 
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4.4.1.  

 
whose value is a little bit smaller than 1, which is in accordance with the definition of α  α  factor.  

The input impedance is:  
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which has a value around 10 ohms, smaller than the input impedance of CEC amplifier.  
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The voltage gain is similar with Av  of CEC amplifier, and output admittance is more close to 

zero than in the case of CEC amplifier because hob=10-7 ΩΩ -1, a value two orders of magnitude  

lower than hoe.  

 
4.5. Common Collector 
Amplifier.  
 
This amplifier is shown in 

Fig.4.13. The differences between 

this amplifier and CEC amplifier 

are: the absence of a resistor in 

the collector circuit and the output 

point in the emitter of the 

transistor. Now, by applying  the 

rules for a.c. equivalent circuit and 

replacing the transistor 

with its simplified hybrid 

circuit, we will find the 

circuit drown in Fig. 

4.14.  

In this case the current 

gain has next formula:  
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        4.5.1.  
 
The input impedance can be calculated from two standpoints of view, the input impedance of 

transistor ziT and the input impedance of amplifier z iA .  
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where we assumed that the load resistor is much higher than the RE , therefore we 

approximated RL' as RE .  

z R z
R z

R z
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+         4.5.3.  

 
The value given by the formula 4.5.3 is lower, in general, than the value given by formula 4.5.2. 

This is the so called "problem of the biasing circuit" in the case of CCC amplifier.  

The voltage gain of this amplifier is given by following formula:  

( )[ ]
( )

( )
1

Rh1h
Rh1

Rh1hi
Ri

v
v

A
Efeie

Efe

Efeieb

EL

i

o
v ≤

⋅++

⋅+
=

⋅++⋅

⋅
==   4.5.4.  

As you can see, the voltage gain is almost equal with 1. This means that the amplitude of the 

output signal is the same with the amplitude of the input signal. This is the reason for which 

this amplifier is called "Emitter Follower".  

The output admittance (impedance) can be calculated based on the following definition:  
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but ( )febo h1ii +−= , and in the particular condition vg=0 , we have the next relation 
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where Rg'=RgRB/(Rg+RB) .  Then the output impedance is:  

   
fe
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hR

z
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+
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= 10       4.5.7.  

The output impedance is very low as compared to the input impedance (four orders of 

magnitude). For this reason CCC amplifier is used like impedance adapter.  

The Problem of the Biasing Circuit for CCC Amplifier.  
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We defined in last section the input impedance of Common Collector Amplifier as:  

z R z
R z

R z
iA B iT

B iT

B iT

= =
+  

As we said, the amplifier input impedance 

(see figure 4.15), is modified by the 

presence of biasing resistor RB , as in the 

above formula. If the resistor RB has a 

lower value than the input impedance of 

the transistor, the input amplifier 

impedance can be dramatically changed as compared to the input transistor impedance 

alone. To prevent this negative influence of the biasing circuit, we must modify it in such a way 

as to provide the same d.c. biasing current, but have a higher a.c. impedance. The modified 

circuit is shown in Fig 4.16.  

The a.c. equivalent value of 

resistor R3 is given by 

Miller's theorem  
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R

A v

3
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1
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−

  

For Common Collector 

Amplifier an usual value for 

the voltage gain is 0.999 , 

then the value of  R3' 

becomes few orders of 
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magnitude bigger than the value of input impedance of the transistor. In this case the input 

impedance of the amplifier is determined mainly by the value of the transistor input 

impedance. The equivalent a.c. circuit of amplifier shown in Fig.4.16 is presented in Fig.4.17  

The current which flows through the resistor R3  can be calculated using the following formula:  

then, the resistor R3, connected between 

input and the output of the amplifier, via 

CE capacitor, is equivalent with a 

R’3 resistor in series with RB 

equivalent resistor, which has an 

increased value only for a.c. 

signals.   

 

 

 

 

 

 

 

 

 

 

 

4.6. The DARLINGTON Pair.  
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The Darlington pair is obtained by directly connecting two transistors as shown in Fig.4.18.  

We will exemplify its use in a CCC amplifier.  

 

From the a.c. equivalent circuit, using the simplified hybrid model we can calculate the 

performances of this amplifier.  
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The most important conclusions are: Darlington pair amplifier has higher current gain and 

input impedance than the Common Collector Amplifier.  The pair is sometimes called a 

supertransistor whose current transfer factor hfe is the product of the individual current transfer 

factors. 

 
4.7. The CASCODE Amplifier.  
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This amplifier is obtained by directly coupling two transistors, one in Common Emitter 

Connection and the second in Common Base Connection as in Fig.4.19  
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      4.7.3.  

The equivalent a.c. circuit of the CASCODE amplifier draw in figure 4.19b is shown as a four 

terminal network in the figure 4.19a.  

The most important conclusion is: the reverse transfer factor is 4 orders of magnitude lower 

than in the case of Common Emitter Amplifier or Common Base Amplifier. Then this amplifier 

has the lowest reverse transfer factor.   

 

 

 

 

 

4.8. The Differential Amplifier.  
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This amplifier is obtained by 

connecting two transistors, with 

very similar static 

characteristics, as in the 

Fig.4.20.  

From second Kirchhoff's Law 

we can write the next equation:  

EECECCCC IRVIRV ++=
112   

 
If we have satisfied the condition  
 

EECC IRIR <<1  ,  
 
we can approximate the current which flows through resistor RE as an constant current. This 

assertion is true too, for the dynamic component of this current. If this current is constant, we 

can conclude that when its component IE1/ie1 increases, the component IE2/ie2 must decrease.  

 The relation between input and output signals must be linear in the case of small 

signals. Therefore :  

v A v A v

v A v A v

i i

i i

0 1 1 1 1 1 2 2

0 2 2 1 1 2 2 2

= +

= +
 ,  

 
but due to the symmetry of the circuit, A 11≈A22≈A1 and A12≈A21≈A2.  

Now, if we define the differential input signal as v v vid i i= −1 2 , and the common input 

signal as v
v v

ic
i i=

+1 2

2
, by decomposing the input signals in the differential input signal 

and the common input signal and replacing these new values in the definition of output 

signals, we will obtain:  
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 ( ) ic21id
21

1o vAAv
2

AA
v ++

−
=     4.8.1.  

  

 ( ) ic21id
12

2o vAAv
2

AA
v ++

−
=     4.8.2.  

 
Now, we can define the differential output signal as : 

 
 ( ) id212o1ood vAAvvv −=−=     4.8.3.  

and the common output signal as:  

 ( ) ic21
2o1o

oc vAA
2

vv
v +=

+
=     4.8.4.  

 
As you can see in fig.4.21, the 

dynamic components of currents 

follow the rule of constant current 

through the resistor RE , then if the 

input signal in the base of T1 

increases (+) the T1 emitter current  

will increase, too, and 

consequently the emitter current of 

T2 will decrease. That drives an 

increase of the output signal of T2 . Like in a mirror, basically the same thing, will happen if the 

input signal of T2 will increase.  

 Then we can conclude that the output of T2 is in phase with the input of T1 , and the 

output of T1 is in opposite phase with its input.  

Let be now the input signals in opposite phase, having following values : 
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2

v
v g

1i =  and respectively 2

v
v g

2i −=  , then the relations 4.8.3 and 4.8.4 become  

( )v v v A A v A vo d o o id d g= − = − =1 2 1 2   

( )v
v v

A A voc
o o

ic=
+

= + =1 2
1 2

2
0   

That will drive the amplifier in pure 

"differential" mode (no common-

mode input). The dynamic 

components of emitter currents will 

be as shown in the figure 4.22.  

Then the total a.c. current that flows 

through the resistor RE is zero. That 

means the emitters have constant 

potential, as being grounded, from the a.c. standpoint of view. Therefore, both transistors 

operate as a common emitter amplifier, the equivalent a.c. circuit being showed in fig.4.23.  

 From Fig.4.23 we can compute the gain for the differential amplifier, taking into 

account  that in fact we have two transistors:  

 2 A
v

v

h R

R h
d

o

i

fe L

B ie

= =
−

+
 4.8.5.  

 
Let’s consider now a pure common 

mode input signal, with no differential 

component. The input signals in phase 

having next values:  

v vi g1 =  and respectively v vi g2 =  . In this case the 4.8.3 and 4.8.4 relations become:  

 
( )v v v A A vo d o o id= − = − =1 2 1 2 0   
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( )v
v v

A A v A voc
o o

ic c g=
+

= + =1 2
1 2

2
   

 
 
As you can see, in this case the total 

emitter current that flows through the 

resistor RE is 2ie1 , then the dynamic 

components of the emitter currents 

being as in Fig.4.23.  

Then the a.c. equivalent circuit will be 

much like a "common emitter" amplifier with a resistor 2RE connected in the emitter (see 

Fig.4.25)  

 
Then the Ac gain (common mode gain) is:  
 

( )
A

v

v

h R

h R R h
c

o

i

fe L

ie B E fe

= =
−

+ + +2 1
       4.8.6  

 
As you can see, the common mode gain is 

lower than differential gain. In general is 

desired to have this common mode gain as 

lower as possible. The ratio Ad/Ac is called 

Common Mode Rejection Ratio (CMRR) 

and serves as a figure of merit to measure how close is the actual amplifier to an ideal 

differential amplifier, that is considered to have Ac=0 and infinite CMRR. In view of further 

increasing the CMRR, we can use constant current source, that has very high output 

impedance in a.c. instead of the RE resistor. A transistor in the common base configuration is 

known to have the highest output impedance of all three possible configurations. Its input is 
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shorted to ground in a.c. (the capacitor connected to its base), whereas its collector  is 

connected to the emitters of the transistors that form the differential amplifier, as in fig.4.26.  

In this case the value of RE resistor is 

substituted by the output impedance of 

common base amplifier, which is in the order 

of megaohms.  This will bring the common 

mode gain close to zero. The potentiometer P 

is used to set the desired d.c. emitter current of the differential amplifier, and bring the T1  and 

T2 transistor in the optimal operating point.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 5. Power Amplifiers.  
 

 



 80 

There are two main 

types of power 

amplifiers: class A  

power amplifiers that 

have the operating 

point at the middle of  

the load line, and 

class B power 

amplifiers, which 

have the operating 

point close to the cut-off limit of the transistor (see Fig.5.1) 

 The first problem of these amplifiers is the signal distortions, or in terms of Fourier 

spectrum, the problem of second harmonics generation. This problem originates from the fact 

that these amplifiers work with large input signals, and in this case the hybrid parameters do 

not remain constant. Therefore the output signal is not a linear function of the  input signal, and 

can be written as a power series:  

 x G x G xO i i= + +1 2
2 ...  where xo is the output signal and xi is the input signal. All the 

power stages discussed in this chapter are "current amplifiers" and therefore the output signal 

is the collector current or the emitter current, which is about the same thing (IC≈IE) when the 

base current can be neglected. Let be the input signal a periodic function: x X ti m= cos ω  . 

In this case, the dynamic component of the output current will be  

i G X t G X tc m m= + +1 2
2 2c o s c o s ...ω ω       5.1.  

But we can replace in this equation c o s
c o s2 1 2

2
ω

ω
t

t
=

+
, which then it becomes: 
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i G X t G X
t

B B t B t
c m m

= +
+

+ = + + +
1 2

2
0 1 2

1 2

2
2c o s

c o s
. .. c o s c o s . ..ω

ω
ω ω  5.2.  

where Bi are constant coefficients. You can see now, from equation 5.2. that the output signal 

has the second harmonics of the input signal, too. This handicap of such amplifiers becomes 

important only for high-power amplifiers. In the case of low power amplifiers, such as the 

Class A amplifiers, this disadvantage is not important since the ratio B2/B1<<1.  

 A class A amplifier is shown in Fig.5.2. Such 

amplifier is a typical common emitter (or a common collector 

amplifier), with the difference that the load resistor RL has 

much lower impedance (a few ohms) than in a standard 

amplifier.  Accordingly, the currents flowing through the 

circuit are much larger.  

The main drawback of the class A amplifier is that in order to 

insure a maximal output voltage swing, the operating point has to be approximately the 

midpoint of the load line  (see fig.5.3). That means that the quiescence current IQ is 

approximately IQ = 

0.5*(Vmax-Vmin)/RL , 

which is half of the 

maximum current. The 

efficiency of the class A 

amplifier, will be the ratio 

between the maximum 

signal output power and 

the average DC power consumption of the amplifier:  
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 but, Qpeak II ≈  , maxCC VV = , and 
2

VV
V minmax

peak
−

=  , 

therefore  

%
V

VV
25

max

minmax
A

−
=η   

 
Since Vmax>>Vmin , the efficiency is close to 25% only, that means that 75% of the power is 

dissipated in form of heat on the circuit.  

Class B power amplifier.  
The main problem of the class A amplifier is the large 

quiescence current. By biasing the transistor near cut-off, as 

shown in fig 5.5, this current can be made almost null. This is 

the called a Class B operation. Such an amplifier with bipolar 

transistor in Common Collector Configuration is shown in fig. 

5.4. However, when input is a sine waveform, only its positive 

alternation will drive the transistor in the active region, whereas the negative alternation will 

bring the transistor into even 

deeper cut-off. As we will see 

later on, this suppression of half 

of the signal can be avoided by 

pairing two complementary 

transistors in such a way that 

each one is active on an 

opposite signal alternation. The efficiency of  a Class B amplifier is:  
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The factor 1/2 from the nominator is due to the fact that the transistor is active for a single 

alternation only. For a similar reason, the average DC supply current (see the diode rectifier, 

presented earlier in this book) is  
π

= peak
avg

I
I . Also maxCC VV ≈ , therefore the efficiency of 

the Class B amplifier becomes:  

( )

CC

minCC

maxpeak

minmaxpeak

c

u
B V

VV
4VI

2
VVI

2
1

P
P −π

=

π

−

==η  

For circuits in which Vmin<<VCC, the efficiency is close to 78%, which is a much better value 

than the efficiency of Class A amplifiers.  

However, a simple Class B amplifier that is active during one signal alternation only, 

suppressing the other one, is of very little use, since it introduces a major distortion of the 

original signal. In order to have the output active for both alternations while preserving the 

Class B operating point, we can pair two transistors in such a way that they are active on 

opposite alternations, in a so called “push-pull” configuration, shown in fig 5.6. 

 
In this case the negative alternation is amplified 

by T1 transistor, because it is a pnp transistor, and 

the positive alternation is amplified by T2 

transistor because it is a npn transistor, and all the 

voltages and current flows have opposite polarity.  

 In all figures, the resistor RL designates the 

load resistor that may be in the real world a speaker, for instance.  
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Crossover distortion.  

The simplified push-pull circuit in fig. 5.6 is missing the bias resistors in the bases of the  

transistors (as are RB1 and RB2 

in fig 5.4), therefore with zero 

input signal both transistors are 

at cut-off. This is the part of the 

desired Class B operating 

regime, and would not hamper 

too much amplifier’s operation, 

unless an arbitrarily small signal 

would take the transistors out of 

the cut-off region. However, in 

the circuit in fig. 5.6, the signal 

has to be larger than the 

threshold voltage Vbe=V γ of the 

base-emitter junction, which is 

typically 0.6 - 0.7 V for a silicon 

bipolar transistor. The result is 

a symmetrical distortion of the 

input signal, as shown in fig. 

5.7.  

The transfer characteristic of 

the second transistor T2 is 

plotted along the negative axis and reversed with respect to the characteristic of first 

transistor T1. The input signal is composed of two opposite alternations, each one driving a 
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different transistor. The distortion notch near the crossover point on the current axis, due to the 

0.5-0.6 V voltage threshold required to bring the transistor into normal operation, is called 

crossover distortion. And it is more important at low levels of the input signal.  

This kind of distortion can be prevented by introducing a biasing voltage on the bases of the 

transistors in such a way that cut-off is not completely reached at point Q, and the transfer 

characteristics will look as in the Fig.5.8.  

In this case the power amplifier works in class AB because at quiescence the operating  

 

point Q is a little bit shifted from the cut off region into the active region. The typical circuit 

which avoids this distortion is shown in Fig.5.9. With the help of the potentiometer P it is 

possible to adjust the required bias voltage and consequently the quiescence current. This 

current is of the order of miliamperes, which is typically much smaller than the normal 

operating current, of the order of amperes, therefore it will not affect significantly the efficiency 

of the amplifier.  

In practice, the current amplification factor of bipolar power transistors is much smaller than 

for small-signal transistor. Therefore, the bias circuit must supply relatively important currents 

to the transistor bases, and has to be implemented with relatively low values of the resistors, 
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increasing the DC power consumption at quiescence and decreasing the amplifier efficiency. 

One practical solution would be to use Darlington pairs instead of single power transistors. 

However, while this solves the biasing problem, it doesn’t solve the problem of poorer linearity 

of bipolar transistors with respect to other transistor types. Today, most of the highly linear 

power amplifier are implemented using power MOSFETS, using a simplified circuit shown in 

figure 5.10. 

Class C power amplifier.  
 
Further increase of the power amplifiers efficiency can be obtained by biasing a transistor 

well below cutoff, so that it is active for only a small portion of the input signal (for instance for 

the “tip” of the sine shown in fig. 5.5). These amplifiers have limited use, since they introduce 

important distortions of the AC signal, and pairing (as for Class B amps) cannot solve this 

problem. However, in radio-frequency (RF) power circuits, most of the loads are resonant 

circuits, that are selective for a single frequency. If we restrict the operation of a Class C 

amplifier to a frequency that matches the one of the resonant load circuit, we can use it in this 

high efficency  (up to 90%) regime 

without distorting the output signal.  

Class D power amplifier.  
 
The ultimate solution for driving up 

the efficiency would be to operate 

the transistor at either full cutoff or 

full saturation. Ideally, if the cutoff 

current and the saturation voltage were both null, the efficiency would be 100%. In practice, 

efficiencies in the 90% ’s are common. The transistor does not operate any more in a “linear” 

mode, but switches continuously between saturation and cutoff. In the past, the power 

transistors had poor switching characteristics, therefore class B push-pull amplifiers were the 
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most efficient circuits available. The advances in the semiconductor technology made 

possible fast-switching power transistors that can operate in the MHz range.  However, in 

most applications a continuous range of output voltages is desired, not just “all-or-none”. This 

can be achieved in a Class D switching amplifier by modulating the duration of a high-

frequency rectangular signal that drives the output transistors, then low-pass filtering (or 

averaging) the high frequency output component of the signal using an LC filter, as shown in 

fig. 5.11. The key to understanding the circuit operation is the Pulse Width Modulation (PWM) 

process, depicted in fig 5.12. When the input is positive, the PWM circuit modifies the duty 

cycle of the fixed frequency oscillator in such a way 

that its positive alternation is wider than the negative 

one, and, after low-pass filtering (averaging), the net 

output value will be positive. A similar encoding 

scheme is applied for the negative signal alternation. 

In summary, the signal encoding is changed from 

amplitude modulation to the duty cycle f the high-

frequency signal, by PWM, amplified, then reconstructed back through low-pass filtering.  

 

 

 

 

Chapter 6. Negative feedback.  
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Most devices used in signal 

amplification generally do not 

have the desired gain, or there is 

a large dispersion in their 

parameters. In order to make an 

amplifier circuit more stable with 

the dispersion of individual components or enhance its parameters, a portion of the output 

signal is fed back to its input. The principle of feedback amplifiers is shown in Fig.6.1. It 

comprises five functionally distinct blocks. The letter G stands for the "Signal source"; the 

letter C stands for the "Comparing circuit"; while the letter S stands for the "Sampling circuit". 

The amplifier has the gain Ao defined by the classical relation:  

A
x

x
o

o

i

=            6.1.  

The feedback signal xf is first sampled from the output signal xo , then it is fed back through a 

network that has the transfer function β: 

    x xf o= β        6.2.  

The input signal results by substracting (or comparing) the source and feedback signals:  

    x x xi g f= −       6.3.  

By definition the gain of feed-back amplifier is given by:  

   A
x

x

x

x x

A

A
f

o

g

o

i f

o= =
+

=
+1

0
β      6.4.  

Formula 6.4. represents the general formula for the gain of feedback amplifiers. The signal x 

can be a current or a voltage signal.  

 Base on equation 6.4., we can define two kinds of feed-back:  

positive feed-back when Af > Ao or negative feed-back when Af < Ao  
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We will now focus our attention on the negative feedback. We can classify the feed-back 

amplifiers based on the sampling and comparing circuits. If the output signal is a current, the 

"sampling circuit" must be a series circuit, while if the output signal is a voltage signal the 

"sampling circuit" must be a shunt circuit. In the case of "comparing circuit" we have the 

reverse situation. If the input signal is a voltage signal the "comparing circuit" must be a 

series circuit, while if the input signal is a current, the "comparing circuit" must be a shunt 

circuit. These situations are shown in fig.2 for two ideal amplifiers. You can imagine the next 

two possible situations, in which: 

a. the input signal is a voltage and the output signal is a current (the case of ideal trans-

admittance amplifier i A v
o y i

= ) or  

b. the input signal is a current and the output signal is a voltage (the case of ideal trans-

resistance amplifier v A io z i= ) .  

 Of course, in reality such ideal situations do not exist. The current amplifier has an input 

impedance different from zero and a finite output impedance, while the voltage amplifier has a 

finite input impedance and an output impedance greater than zero. Based on the feedback 

type, these impedances are modified, for the advantage of the feedback amplifiers.  
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Advantages of Negative 
Feedback Amplifiers.  
 
1. Stability.  
 When applying strong 

negative feedback we have 

βA o >>1 . In this case we can 

neglect the term 1 to the 

denominator of equation 1.4., 

and thus the gain becomes:  

 A f ≈
1

β  

 6.5.  
This formula proves that the negative feedback amplifiers have a constant amplification, 

independent of the active device 

(transistor, OPAMP, etc.).  

2. Expansion of bandwidth.  
In Fig.6.3 is represented the 

amplification as a function of the 

frequency of input signal for an 

amplifier (Ao) and for the same 

amplifier with a negative feedback (Af). As you can see the bandwidth is largest for the 

negative feeback amplifier. We will mathematically demonstrate in the next paragraph that for 

high cut-off frequency, this increase is:  

( )f f Aif i o= +1 β   

 
3. Noise reduction.  

 Every amplifier is characterised by a noise gain AN . This gain decreases by applying 

a negative feedback as in 6.4. formula.  
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  A
A

A
N f

N

N

=
+1 β   

4. Total Harmonic Distortion (THD) reduction.  

 Every amplifier has a certain degree of non-linearity. Its output cannot be written any 

more as a simple linear function of the input signal x0=A0xi , but it can be written as a power 

series. In terms of the power spectrum, this is reflected in the generation of harmonics when 

the input signal is a pure sine signal having a fixed frequency. The cumulated amplitude of  

these harmonics expressed as a percentage of the amplitude of the fundamental frequency is 

called total harmonic distortion (THD). In most cases, the second harmonic is largest then the 

sum of all others, and therefore finding its relative amplitude D2 provides a fair estimation of 

the overall THD rate. In transistor circuits the distortions arise form the fact that the signal 

cannot be made arbitrarily small to make it verify the linearity hypothesis, therefore for real 

signals the hybrid parameters cannot be considered constant any more. By applying a 

negative feed-back, the second harmonic generation is reduced following the same equation 

6.4. :  

  D
D

Df2
2

21
=

+ β   

 
 
5. Input and output impedance changing.  

 Fig.6.4 represents a typical shunt (parallel) 

comparing circuit for a real current amplifier. By 

definition, the input impedance is R
v

i
i

i

i

=   and the 

current gain is A
i

i
i

o

i

= .  

The input impedance, in the case of negative feed-back becomes :  

 



 92 

R
v

i

v

i i

R

Aif
i

g

i

i o

i

i

= =
+

=
+β β1

, then Rif<Ri in this case.  

 Fig.6.5 represents a typical series comparing circuit for a real voltage amplifier. By 

definition the input impedance is R
v

i
i

i

i

=  and the 

voltage gain is A
v

v
v

o

i

= .  

The new input impedance, for negative feed-back 

amplifier becomes :  

( )R
v

i

v v

i
R Aif

g

i

i o

i

i v= =
+

= +
β

β1 , then Rif>Ri in this case. You can try to demonstrate 

what happens with output impedance (see fig.6.2 and take into account that you have a real 

amplifier).  

 
Positive Feed-back.  
 
As we have seen, the gain of amplifier with feed-back, is given by the equation 6.4 :  

   A
A

A
f

o=
+1 0β   

From this formula one can see that the gain goes towards infinity (and so does the amplitude 

of the output signal) if the denominator vanishes to zero. In this situation, even in the absence 

of an input signal, any noise or fluctuation at the input leads in the generation of a large output 

signal, which is further fed back to the input, being perpetually regenerated. The device is 

called "oscillator" or signal source generator. The condition:  

   βA o = −1         6.6.  
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is named "Barkhausen's criterion". One has to note that in general both the transfer function β  

and the open-loop amplification factor A0 are complex (in order to accurately describe both 

amplitude and phase properties), therefore the Barkhausen criterion can be written as two 

different criterions for the real and imaginary part. 

The LC oscillator.  
The voltage gain of the voltage amplifier depicted in 

Fig.6.6, having the load impedance zL is :  

A
v

v

z i

v

kz

z r
v

o

i

L L

i

L

L o

= = =
+   6.7.  

where zL is :  

( )
z

z z z

z z zL =
+

+ +
2 1 3

1 2 3

    6.8.  

The feedback signal is the input signal:  

v v vi f o= = β  

From this relation results the feedback factor:  

      β =
+
z

z z
1

1 3

     6.9.  

Now, in relation 6.6. we can substitute Ao as given by equation 6.7. and β as given by 

equation 6.6. Under these conditions, the Barkhausen criterion becomes:  

 

   ( ) ( )− =
+ + + +

1 1 2

1 2 3 2 1 3

kz z

r z z z z z zo

    6.10.  

Now, if all zi impedances are reactances (zi=jX i), the formula 6.10 can be a real number only if  

   X X X1 2 3 0+ + =       6.11.  
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The relation 6.11 is the "oscillator condition" for LC oscillators. From equations 6.10 and 

6.11,  we can obtain the second condition for LC oscillators: 

   k
X

X
= 2

1

        6.12.  

From equation 6.11 results that if  X1 and X2 are inductances, X3 must be a capacitance.  

This is the so called Hartley oscillator. Conversely, if X1 and X2 are capacitances, X3 must be 

an inductance. This is the so called Colpitts oscillator. In next figures are presented the two 

main types of LC oscillators. The operating frequencies are deduced from equation 1.6. Then, 

for the Hartley oscillator we have:  

  ( )jL jL j
C L L C1 2

2

1 2

1
0

1ω ω
ω

ω+ − = ⇒ =
+     6.13. 

  

 
 
and for Colpitts oscillator we have:  

  jL j
C

j
C C C

C C
L

ω
ω ω

ω− − = ⇒ =

+








1 1
0

1

1 2

2

1 2

1 2

   6.14.  
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The usual range of operating frequencies for the Hartley oscillator is 100kHz – 10MHz, and for 

Colpitts oscillator is 1MHz – 100MHz. For lower frequencies, RC oscillators are used, while 

for higher frequencies oscillators with Leher line (distributed LC constants oscillators) or wave 

guide oscillators are used. For very high frequencies, special electronic devices such as 

tunnelling diodes, Impatt diodes, clystrons and magnetrons (up to 1Ghz) are used.  

RC oscillators.  

The positive feedback in these oscillators is performed by the "Wien network", as in fig.6.7. , 

where:  

z R
jC

1 1

1

1= +
ω  and 

1 1

2 2

2
z R

jC= + ω   

v
v

z z
z v

z

z zi
o

o=
+

= ⇒ =
+1 2

2
2

1 2

β β   

 

Then:  

 

β
ω

ω

=
+ + + −









1

1
11

2

2

1
1 2

1 2

R

R

C

C
j R C

C R

     6.15. 

Now, if we want to have the Barkhausen criterion satisfied, the feedback factor must be a real 

number, therefore the parenthesis in the denominator of 6.15 formula must be null. Based on 

that condition, we can calculate the frequency of the RC oscillator as:  

    ω 2

1 2 1 2

1
=

R R C C
   6.16.  

If we have R1=R2 and C1=C2 , the gain of amplifier must be Ao=3, according to equation 6.15.  
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Chapter 7. The Bipolar Transistor Behaviour at High Frequency  

Signals.   

In the case of high frequency signal, applied to the input of a bipolar transistor, the output 

signal will depend on the junctions’ capacitance, that cannot be neglected as we did for the 

low frequency signal analysis. Then for high frequencies signals the hybrid model of the 

transistor must be replaced by other model that take into account the junctions’ capacitance.  

The “ΠΠ ”   Hybrid Model. (Giacoletto Model)  

 

 
 
 In Fig.7.1 is shown the model proposed by Giacoletto for the bipolar transistor 

operating with high frequency input signals. The point B’ represents the so called “virtual 

base” which represents a point inside the semiconductor which forms the base of transistor. 

Between this point (B’) and the pinch of the base (B point) exists the so called “distributed 

resistance” of the transistor base (rbb’ ). This “distributed resistance” takes into account the 

real resistance of the thin longitudinal section of the semiconductor which forms the base of 

transistor. In this case, the input signal applied to the base B is not the real input signal, due to 

the voltage drop that occurs on resistor rbb’  . The real input signal will be the voltage signal 

which goes up the virtual base B’, therefore the forward transfer factor gm (the transfer-



 97 

conductance) is multiplied with the voltage between virtual base B’ and the emitter of 

transistor E, aiming at providing a model for the “constant current generator” of the 

collector (gmVb’e).  

 The input impedance of the transistor is modelled by resistor rb’e , while the diffusion 

capacitance of the emitter junction is modelled by capacitor Ce connected in parallel with the 

rb’e resistor.  

 The “Early effect”, or base width modulation effect, is modelled by the resistor rb’c , 

while the barrier capacitance of the collector is modelled by the Cc capacitor connected in 

parallel with the resistor rb’c . Finally, the output impedance is modelled by the rce resistor.  

 The common values for all these model components are:  

rbb’ = 100 ohms ; r b’e = 1 Kohms ; rb’c = 4 Mohms ; rce = 80 Kohms ;  

Ce = 100 pF ; Cc = 5 pF ; gm = 50 mA/V   

 The main advantage of this high-frequency model is that it allows to compute 

all these parameters using the well-known hybrid parameters of the transistor (h ie , 

hre , hfe , hoe) .  

The transfer - conductance g m .  
 
 The most important factor of the “Π” Hybrid Model is the transfer - conductance gm .  

The definition relation of gm is as follows:  

gm
C
b e

E
b e

E
E

= = − =
∂

∂
α

∂
∂

α
∂
∂

 I
 V

 I
 V

 I
 V' '

,  where we took into account that IC IE≈ −α .  

But , from the P-N junction we know that 
∂
∂
VE
IE

re= '  , then  gm
E
E re

= =α
∂
∂

α I
 V ' . Because the 

emitter junction behaves like a forward biased P-N junction, then we can use the relation for 
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the ideal diode IE const e

V
V

E

T≈ ×. . Therefore the derivative of IE versus VE is going to be: 

∂
∂

IE
VE

IE
VT

≈ , and the expression of gm becomes :  

   
T

C

T

E

E

E
m V

I
V
I

V
I

g =α≈
∂
∂

α=    7.1.  

 
As you can see, the equation 7.1. is the first one connecting the main transfer factor in the 

transistor model to temperature (VT  = kT/e).  

 
The connection between the Giacoletto Model and the Hybrid Model.  
 

 
In fig.7.2 we present both models 

(hybrid and Π hybrid) of transistor. In 

order to draw a correspondence 

between them, we must consider  

only the case of low frequency input 

signals, because the hybrid model is 

valid only for low frequencies.  

 In this case, we can neglect all capacitors in Π hybrid model and the current that flows 

through resistor rb’c .  

 Then, according to hybrid parameters definition, we can write following relations for the 

input circuits of these models:   

 i g v g i rc R m b e m b b e
L = = =0 ' '  , but 

i
i

hc

b R
fe

L =
=

0
, then we have following relation 

between trans-conductance of Π hybrid model and forward transfer factor (hfe) of the hybrid 

model:  
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  e'bmfe rgh =       7.2.  

 
The Gain Current at High Frequency.  
 
 In the case of high frequency input signal and low load resistor (RL<rce), we can neglect 

a number of elements of the Giacoletto model, as you can see from the figure 7.3.  

 

  
 The currents that can be neglected are represented by doted lines. Also, the devices 

through which such currents flow can be neglected, too. In this situation we have following 

elements:  

  r b c Cc
' >>

1
ω  ; rce RL>>   

Using Miller’s theorem, we can replace the Cc capacitor as you can see in figure 7.4.  
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were  ( )
1

1

1
1

1ω
ω

ωC c

Cc
Av Cc gmRL'

=
−

=
+

, because 

Av
iLRL
vb e

gmvb eRL
vb e

gmRL= =
−

= −
'

'
'

  

and C”c=Cc , because z
zAv

Av
z Av

"=
−

≈ >>1 1  

 
Then the current gain is:  
 

  A
i
i

g v
v
z

g r 
ri

L

i

m b e

b e

i

m b e

e
= = − = −'

'

'

'1+ j Ci  bω      7.3.  

where ( )C C C C C g Ri e c e c m L= + = + +' 1   

but, A
h

j
f

f

i
fe= −

+1
2

 , the we can define  

( )[ ]f
r C C g Rb e e c m L

2
1

2 1
=

+ +π '
      7.4.  

as the high frequency for which the real current gain decreases to A
A i

2 2
= .  

We can also define the cut off frequency (foff), as the frequency for which the real gain 

becomes equal to one,  

A
h

f

f

h f

f f

h f

fi f f
fe

off

fe

off

fe

offoff= = =

+

=
+

≈1

1
2

2
2

2

2
2 2

2
    7.5.  

from 7.4. and 7.5. relations we can obtain 

( ) ( )f h f
h

r C C
h g
C Coff fe

fe

b e e c

fe b e

e c
= =

+
=

+2 2 2π π'

'

' '
   7.6.  



 101 

Relation 7.6. connect the cut off frequency to main parameters that define the Giacoletto 

model (gm, Ce, Cc).  

If we take the load resistor as being null, RL=0, the capacitance C’c becomes Cc , then the 

relation 7.6 becomes, if we neglect Cc versus Ce (Cc<<Ce):  

   f
h g

Coff
fe b e

e
= '

2π
      7.7.  

Equation 7.6. can be used in order to determine experimentally the value of Ce , the most 

important capacitance of Π hybrid model.  

 Now, if we define the current gain using the attenuation of the signal, that means to use 

the decibels way of expressing it:  

( )G A
h

h f

f

h f
h f

h f

f
h f fi i

fe

off

fe off

fe

fe
fe

fe

= =

+

≈ = = −20 20

1

20 20 20 20
2 2

2

2
2log log log log log log  

you can see that Gi(f) is a linear function of the frequency f. Therefore this function can be 

represented as in figure 7.5.  
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Chapter 8. Multivibrators  

 
8.1. The Astable (free-running) Multivibrator.  
 

The astable or free-running multivibrator 

is presented in Fig.8.1. In fact this circuit 

is realised by two simply common 

emitter amplifiers (both with fixed 

biasing circuits) coupled between them 

by two capacitors C1 and C2. The 

biasing circuit (RB1 and RB2 resistors) 

has such a value that the transistor works in saturation region of output current (see fig.8.2 

where are represented the possible working points).  

The signals generated by such circuit are shown in Fig.8.3.  As you can see, if one transistor 

is on, the second transistor is off. The transistor is switched on when his base voltage 

becomes a little bit positive (npn transistor). That is possible because the capacitor 

connected in his base will discharge via 

the transistor which is in conduction (on).  
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If we start from the initial conditions as in Fig.8.1 (T1 on and T2 off) at time t0 , the collector 

voltage of T1 is very close to zero (VCEsat), whereas the collector voltage of T2 is Vcc , this 

transistor being turned off. The base voltage of T1 is a little positive, this transistor being 

turned on, and the base voltage of T2 being -VCC (transistor turned off) as in fig.8.3. Because 

the transistor T1 is on, the capacitor C1 can not remain charged, then it will discharge through 

RB2 resistor and collector-emitter circuit of T1. At the time t1 the base voltage of T2 becomes a 

little bit positive (the C1 capacitor will try to recharge to maximum potential which exist in 

system) and in this moment T2 is switched on. Following that, the polarity of C2 capacitor 

plates will change because the drop voltage can not change instantly on a capacitor3, then the 

base voltage of T1 transistor become -VCC and this transistor will be switched off. From this 

moment (t1) becomes the discharge of C2 capacitor trough RB1 resistor and the collector-

emitter circuit of T2 , as in the first case, till the moment t2, when the system come back to the 

state of t0 moment.  

8.2. The Monostable Multivibrator.  
 

As you can see in fig.8.4, the 

biasing circuit for T1 is a typical 

circuit via RB1 resistor. The 

biasing circuit for T2 transistor 

is connected in the collector of 

T1 (the RB2 resistor). Then, if 

transistor T1 is “on”, that means 

in conduction, the biasing voltage in the base of T2 is too low and this transistor is “off”, that 

means no conduction for this one and the voltage on his collector is just +V CC . This state 

                                                                 
3 ( )V V V V VC CC CC CE sat CC2 20= + − + = − − + ≈ −( )  
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represents the stable state of this circuit and for that this circuit is called “monostable circuit”. 

Now, if we apply a positive pulse (trigger pulse) on his base we will force this transistor to 

enter in conduction regime, that means a change in the polarity of the plates of C2 capacitor, 

because the voltage across a capacitor can not change suddenly 

( CCCCCCBAc V0VV0VVU
2

−=−−=−+=−= ). Then, after applying the trigger pulse, 

transistor T1 will be turned off, because the A plate of C2 capacitor will change his potential 

from +0 Volts to –VCC Volts. Because under these circumstances T2 remain in conduction 

state, the capacitor C2 will discharge via the emitter of T2 to the ground. Then T1  will remain in 

cut off state untill the C2 capacitor discharging 

is complete.  

 
8.3. The Bistable Multivibrator.  
 
In Figure 8.5 is shown the Bistable 

Multivibrator, or the Flip-Flop. The name of this 

circuit means that both on/off states of the transistor are stable states. Then, in order to bring 

transistors to their complementary states, we must trigger the transition of the circuit from an 

external signal. If, 

such as in Fig.8.5, 

the T1 transistor is in 

the “on” state, then 

the T2 transistor is in 

“off” state, the 

switching to the 

complementary 

state (T1 off and T2 on), can be triggered by a positive pulse applied to the base of T2. In this 
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case, the polarity of both capacitor plates connected to the transistor bases, will be reversed, 

because the drop voltage on a capacitor can not change instantly. The new state will be T1 off 

and T2 on, which is a stable state too. In the aim to come back to the initial state, T1 on and T2 

off, we must applied a second trigger pulse, now in the base of T1 transistor. The shape of 

collector signals looks like in Fig.8.6. However, there’s no need to apply two different pulses 

to trigger the switching. Indeed, if we connect the two trigger inputs together, the positive 

pulse applied to the base of the transistor which is already in the “on” state will have no effect, 

whereas the pulse delivered to the base of the transistor that’s in the “off” state will actually 

trigger state switching. 

 As you can see in Fig.8.6, we need two trigger pulses to come back to the initial sta te. 

That means that the bistable circuit is a divider with 2 of the original trigger frequency.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 9. The Operational Amplifier.  
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Historically speaking, the name Operational Amplifier comes from their use in early analogic 

computers, for performing different mathematical operations. In general an Operational 

Amplifier (OPAMP) is a high gain (AV~105) differential voltage amplifier, with relatively high 

input impedance (Zi~106). Following these characteristics, one can quickly extract the 

following rules for the normal operation of the OPAMP: 

A. Due to the high input impedance, the current through the inputs in negligible and can 

be considered 0 in most applications. 

B. The voltage between the differential inputs is very close to zero. This is a result of the 

fact that if the output is not at saturation, its normal voltage range is of the order of volts 

or tens of volts. Since AV~105,, the input differential voltage is vi=vo/AV ~ 10-4 V, in the 

sub-mV range.  

The OPAMPS are never operated in open loop 

configuration,  and in order to stabilise their behaviour, a 

negative feed-back is applied in various configurations, the 

simplest being shown in fig. 9.1, in which there’s a “total 

feedback” applied from the output to the inverting input.  

Following rule B, the voltage between the inputs (of which one is now shunted to the output) is 

null, therefore: vo=vi. Since the voltage output closely follows the input voltage, this 

configuration is called “voltage follower”. However, this stage differs from a simple shunt, 

which provides the same unitary voltage gain, in that that the input impedance is very high. 

If one desires a voltage gain greater than one, it has 

to apply a less stronger negative feedback. This can 

be achieved by dividing the output voltage using a 

resistive divider before applying the negative 

feedback, as shown in fig. 9.2.  The feedback 

v i

vo

OPAMP

Fig. 9.1

+

_

 

Z i

Zf

vi

vo

OPAMP

Fig. 9.2

+

_
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voltage at the output of the divider is 
if

i
o ZZ

ZV
+

⋅ , which, following rule B is practically the input 

voltage. From here, the voltage gain can be calculated as: 

i

f
V Z

Z
1A +=  

Since this configuration preserves the polarity of the DC input signals or the phase of the AC 

input signals, it is called “noninverting amplifier”. 

In some applications, one may want not only to amplify the signal, but also to change its 

polarity or phase. This is achieved by the configuration shown in fig. 9.3, named “inverting 

amplifier”. The negative feedback propagates through the Zf impedance from output to input. It 

results in an equivalent input impedance at the inverting input which will be shown to vanish to 

zero. By means of the Miller theorem, the feedback impedance impedance is equivalent to 

two impedances connected in parallel with the input circuit, respectively with the output circuit, 

as shown in fig. 9.4. The values of these impedances as given by Miller’s theorem are:  

 

v

f
2

v

f
1

A
1

1

Z
Z   ;   

1A
Z

Z
−

=
−

=  

Since Av is very high, the input impedance Z1 vanishes to zero and acts like a “virtual short-

circuit”  or shunt to the ground. This could have also been quickly inferred using rule B. 

However, this virtual shunt differs from a real one in that that the current through it is null, given 

Zi
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v i vo
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the rule A, therefore all the current flow is directed through the feedback impedance Zf. The 

equivalent circuit of Fig. 9.3 results in being as simple as shown in Fig. 9.5  

 Based on this transformation, the voltage gain of the 

inverting amplifier can be calculated as : 

i

f

i

f

s

o
f Z

Z
iZ
iZ

v
vA −=−==  

 Accordingly, the input impedance is simply going to be 

the impedance inserted in series with the input. This is going to be much less than the input 

impedance of the OPAMP itself, or the input impedance of the voltage follower or the inverting 

amplifier. Moreover, if the signal source does not have a negligible internal (or output) 

impedance, its impedance will add to the input impedance of the inverting amplifier. This will 

result in a change in the voltage gain, which for the other amplifier configurations is fairly 

constant  with respect to the signal 

source impedance.  

Basic Circuits using OPAMPS.   

9.1 . Summation Circuit.  

As mentioned earlier, one of the first 

uses of OPAMPS was in performing 

mathematical operations. Summation is the most basic one, and the circuit that performs this 

operation is based on the inverting amplifier configuration, as shown in fig. 6. 

The input currents sum at the virtual ground point following one of the Kirchhoff’s current laws. 

....
R
v

R
v

R
v

R
v

i 4321 ++++=  

but since this current flows entirely through the feedback resistor Rf (following rule A), we have: 

f0 iRv −=  

vs

vo

Zi Zf

Fig. 9.5
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then  

( )....vvvv
R
Rv 4321

f
o ++++−=  

equation that shows that the output voltage is proportional with the summation of input 

voltages.  

A substracting circuit can be built in two stages, first by inverting the voltage to be substracted 

using  an inverting amplifier having unity gain (Rf=Ri), then adding this “negated” voltage to the 

second one by using the summation circuit discussed above.  

9.2 . Integration Circuit.  

The impedances used in the basic 

inverting and noninverting applications 

can be purely capacitive or inductive, not 

only resistive. In this case the OPAMP 

can perform complex mathematical 

functions such as integration and 

differentiation. If in the inverting configuration we use as feedback impedance a capacitor, the 

voltage across it will be the integral of the current that charges it: 

  ∫−= dt)t(i
C
1v
f

o  

 But the charging current is actually the input current, 
R

)t(v
)t(i i= ,  

therefore 

 ∫−= dt)t(v
RC

1
v i

f
o  , 

equation that shows that the output voltage is proportional to the integral of input voltage.  

9.3 . Differentiation Circuit  
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Conversely, if the input impedance is a 

capacitor, the current that passes 

through it is going to be: 

  
dt
dv

Ci i=  

but iRv fo −=  and therefore  

 
dt
dv

CRv i
fo −=  ,  

equation that shows that the output 

voltage is proportional to the derivative of 

the input voltage.  

9.4. Ideal Rectifier  

Voltage rectification is primarily 

performed using rectifier diodes. 

However, the diodes present the flaw of a nonzero rectifying voltage threshold (or forward 

voltage). Signals smaller than the forward voltage simply cannot be rectified. Since we have 

seen that the OPAMP in appropriate configurations can do a number of magic things such as 

creating virtual shunts with no current through them or changing circuit impedances, it’s worth 

checking if it can do something about creating a “virtual diode”  with a null threshold voltage 

(ideal rectifier). Let’s take a look at the schematics outlined in figure 9.9. 

The situations in which the input voltage is positive  or negative will have to be dealt with 

separately,  since the conduction states of the of the diodes Dr and Df will be different, and 

therefore the input current will branch in a different way. In this inverting configuration, for an 

arbitrarily small negative input, the very high voltage gain will drive the output of the OPAMP 

positive enough to bring the diode Df into conduction, above its threshold. Conversely, the 

diode Dr will be reverse biased, and therefore there’s going to be no current flow through it. 
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All the current If is going to flow from the output of the OPAMP through the diode Df and the 

feedback resistor Rf, with a direction opposite to the conventional one depicted in fig. 9.9. 

Since the inverting input is a virtual ground point, the voltage at the output is going to be:  

ff0 Riv −=  , or  
R
Rvv f

i0 −= ,  that is inversely proportional to the negative input voltage.  

For a positive input voltage, the OPAMP output is going to be driven negative, in which case 

the diode Df is going to be reverse polarized, acting as a circuit breaker, letting the output 

voltage vo being driven to the ground through the load resistor or through the feedback 

resistor. All the input current will flow through the diode Dr, which is forward polarized to the 

output of the OPAMP. The output voltage of the rectifier stage will be null. This dual behavior 

is approaching the ideal rectifier characteristics. 

Finish: Congratulations for those who got to finish this course!  

The authors.  


