Chapter 1. Introduction to Solid State Physics.

E3 1.1. Fermi — Dirac Distribution and the

~ Density of Energy States in a Solid
E1

Let be P(El) the probability to have an electron

E, —’\ in the state characterised by the energy E1, then

Fig.1.1 4 1- P(El) will be the probability to have not an

electron in this state (on this energy level). For the energy level configuration, depicted in
Fig.1.1, the total probability to have such a state (E; and E; filled and E; and E, unfilled) is
given by the formula:

PE,)PE, A1- PE, )H1- PE.))

The probability for the complementary situation is:

- PE.)A- PE,))PE: ) PE.)
Both probabilities must be equal in the case of thermal equilibrium, therefore we can write the
following equality:
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But the principle of energy conservation requires

WAL that E, +E, =E, +E, and in this case only the
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: function Aexp( bE) can be identified with
: el o)
—- 1=, whereb =1/ kT and
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A =exp(-Eg/KT).
Then the probability to have an electron in the state

characterised by energy E is:

1
P(E) = fe (E) = TE,: 1.1.2.

1+e kT

and the probability to have an empty state is :



fo(E) =1- fo(E) = 1.1.3.
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The function f is known as the “Fermi-Dirac distribution” and is represented in fig.1.2.

At T=0 K, the shape of this function is like the shape of a “step function” (see dotted line) ;

AtT 1 OK ,for E = EFE, the probability to have an ekectron on this state is 1/2. The shape of

Fermi-Dirac distribution for this temperature is represented by an continuous line.

The state characterised by E = Efg is known as “Fermi level” and represents a virtual

energy level characteristic for any solid state material. This level is the upper limit of energy
levels which can be filled with electrons at T=0 K. (Only in the case of metals exist such
situation. For isolators and semiconductors the upper limit been lower, as you will see in next
paragraph)

Next problem, in solid state physics, is to obtain the formula for density of such energy states
(the number of energy levels in the unit volume). In order to accomplish that, we must work in
the “momentum space”.

The quantum mechanics asserts that in a stationary state, an electron can be described by a

stationary wave function. That means that in a bulk material having the characteristic
dimension L, only electrons that have the associated wavelengths | verifying L = nE

can exist, where n is a positive integer. This formula must hold on all three coordinates (X, y,
Z). But the wavelength is linked to the momentum (or impulse) p through “de Broglie” formula
p‘ A I h

= —. Consequently we have the following
|
= /-V =(h/2L)

f > direction) and the dimension of the bulk

PX/ Fig.1.3 material:

relations between momentum (on each space

ry=1




Py = X s Pv=E—=— P, = Z_  For the unit cell in the space of moments
a2ttt A
h .3
(ny =ny =n, =1), with the volume gezg , We can have two states (Pauli’'s Principle),
eslg

1
represented in Fig.1.3 by two arrows (spin quantum number E )

Consequently, the density of electrons’ states in the unit cell will be:

.3
d=—2 =20 1.1.4.
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In this case we can calculate which is the number of electrons which have the momentum lying
between p and p+dp , using the Fig.1.4 which represents only the positive region of the space

of momentum, because all components of the electron’s momentum are positive.
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1.1.5.
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But the kinetic energy for the quasi-free electron can be written as E, = g— . Therefore, we
m

can rewrite the 1.4 formula as the density of electronic states which have the energy between

E and E+dE
/2
N(Ek):%(zmn)3 Ex/2 1.1.6.

where m* is the effective mass of the electron.



A similar formula can be found for holes (the density of unfilled electronic states that have the

energy between E and E+dE

_4p(, « B2 12
N,D(Ek)_h—s(zmp)3 Ex 1.1.7.

where m*p is the effective mass of the hole.

1.2. The Density of Charge Carriers in a Pure Semiconductor.

In an pure semiconductor, as we mention in the introduction, we can represent the
energy states of an electron or hole using the model of energy bands. Let's consider for
example the case of the Germanium crystalline lattice. As can be seen in Fig.1.5, the
bounded valence electrons are in the Valence Band, characterised by the upper energy level
Ev, but can exist too in an excited state in Conduction Band, characterised by the lower
energy level Ec. In the Conduction Band the electrons are not bounded to the atom and they
can have an moving trough the crystalline lattice from atom to atom. The same thing can be
done by the hole, which represents the empty state which remain in the Valence Band after

the jump of the electron from Valence Band to the Conduction Band by thermal excitation.

EC \\\\\\\é\\\\ \ But for elecrons E,Z =E- E_ and for holes
E

=E, - E.

k \

Now we can compute the density of charge carriers in

CB or in VB, using next formulas:

EV//‘/7 /V/‘//f//// ne =n= . fe(ENEME 121,

Flg 1 5 or, for holes,
—_ — \EV
Np=p= O¥ fp(E)Np(E)dE 1.2.2.

We will compute the density of charge carriers using the 1.2.1, 1.2.3, 1.1.6 and 1.1.7

substituted into 1.2.1 and 1.2.2:



¥ * /12
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h3

Ec

and for holes:

/12
Ev 4p(2m*)3
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1+e kT
In order to be able to integrate the above equations, we have to make certain approximations,
allowed by the typical environment conditions. For instance, at room temperature, T=300°K,
the index of exponential from the denominator of Fermi-Dirac distribution is very high, and in
this case we can neglect te factor 1 from the denominator. In this situation the Fermi-Dirac
distribution becomes for electrons:
E-Ef _Ef-E

1 . . .
fo (E) = —FE e kT, while for holes it becomes fp(E) = ——=——»e KT

1+e kT 1+e kT

Now we can use the next mathematical artifice

E-Eg+Ec-E,  E-Ef  E-E

e kT e kKT ’ e kT

, where the first term is a constant for the semiconductor
material, that can be moved out of the integral. Finally the expression for density of electrons
in Conduction Band is :
«B/2 Ec-Epy E-E.
_ 4p(2m ) T s 12
n= h3” e KT 3E-E % K dE 1.2.3.
EC

and, correspondingly, the density of holes we will be:

«B/2 Er-E g E,-E
p—h—3e O(Ev - e 2.4
-¥

By making a change of variable in both integrals,

2 _E-Ec 2 _Ev-E
KT

X

, the expression for electron density becomes



4 2m* /12 _EC'EF ¥ )
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correspondingly, the expression for holes density becomes:

4p(2m*)3/2 BBy 2
p:—hg e kT (k)2 c‘)2x2e'x dx
-y

Now both integrals can be computed by the parts method, as shown below:
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¥
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where the last integral is half of the Poisson integral e’ X“dx =+p
- ¥

Now we have the final expression for both densities of charge carriers if we introduce the
1.2.5. equationin 1.2.3. and 1.2.4. equations:

2(2 *kT! 2 Bk (EelEF
n = 2EPTh e KT =Nge KT 1.2.6.

h3

respectively

* /2 - -
2(2pmka)3 BBy BB
=17 P 7 e

p 3 KT =Nye KT 1.2.7.

The constants N and N, are so called “density of energy states” in C.B., respectively in V.B.
*

Nc <Ny because m; <mp

The position of Fermi level in pure semiconductors.

In an pure semiconductor, the density of the two types of charge carriers is the same N=p

because these carriers are generated by thermal excitation from Valence Band to Conduction
Band, as shown in Fig.1.5.

Thus, we can write the following equality:



Ec-Ef Eg-Ey 1.2.8.
KT = KT
Nce =N,e

Now, we can transform the equation 1.2.8. into:

\ Er- E,- E. +E¢
vV —e kT
Nc

to which we can apply the logarithm and then, with a simple operation we can extract the value

of Fermi level:
+

Er SEc*Bv KT Ny 1.2.9.
2 2 N¢

The equation shows that the Fermi level is in the middle of forbidden band, at T=0K. If

temperature is increasing, the Fermi level shifts towards the Conduction Band (see figure 1.6)
The most important equations, valid in any
semiconductor are the “law of charge conservation”.
Based on equation 1.2.8. we can prove that the

product of density charge carriers is a constant of

»  semiconductor material, because this product does
Fig.16 T
not depend on Fermi level. This product is the so

called “pure density” :

5 _ E.-Ey
nf=n" p=NN,e K 1.2.10.

For the most common semiconductor materials, at room temperature, the values of this

constants are:
Germanium: N¢ =1.04" 10°cm™3; Ny, =6” 10%cm™3; n? =2.4x10*°cem™®

silicon: N¢ =2.8” 10¥cm™3; Ny =1.4" 10®cm™3; n? =2" 10¥cm™®



1.3. Extrinsic Semiconductors (Doped Semiconductors).

p doped Semiconductors.

If in a material like Silicon or Germanium we introduce atoms like Al, Ga or In , which are
atoms from the Il ™ group of Mendeleev’s Table , the ionisation potential of this atoms will

dramatically decrease. This effect is explained by the dependence of ionisation potential by
the 1/ erz, where g, is the relative dielectric constant of the medium in which are these atoms,

respectively the relative dielectric constant of Germanium or Silicon.
For this materials the relative dielectric constant is e, =12 and respectively e, =16 . The

ionisation potential for such atoms from Ill group of Mendeleev’s Table, inserted in Ge or Si, is

givenin Table 1.

Table 1
B Al Ga In
Si 0.045eV 0.057eV 0.065eV 0.16eV
Ge 0.0104eV 0.0102eV 0.0108eV 0.0112eV
These energies are represented in the
E _ model of band energies by the existence
G

of an acceptor energy level, very close to

EA—:—: .—2 Valence Band (distance between this
E Er
\%

acceptor energy level and the upper

energy level of Valence Band - E , is the
Fig.1.7
Figure legend @ edectron © hole
transition; E. lower level of CB;
E, upper level of VB; E, acceptor level;
E, Fermi level

ionisation energy of impurity atoms) as in
figure 1.7.

Arrows indicate transitions of electrons from the Valence Band to acceptor level or to
Conduction Band. Because the acceptor level is closer to Valence Band than Conduction
Band, the probability to have such a transition in acceptor level is higher thanthe probability to
have such a transition to Conduction Band. For that we will have more electrons on acceptor

level than in the Conduction Band, but all these electrons are bounded electrons, ionising the



acceptor impurities. They do not participate to conduction phenomena, but holes, generated
by such transitions can participate to conduction phenomena and they are more than the
electrons from Conduction Band. The holes are “majority charge carriers”. For this reason we
named these semiconductors ‘P semiconductors”. The probability to have an electron on
acceptor level has the same form like Fermi-Dirac distribution for electrons in Conduction

Band, if we did not take into account the degeneracy factor

1
Er-Er
1+ e kT

fa(E) =

then the density of ionised acceptors will be:

_Ea-Ef
Na =Nafa(E) » Nae KT 1.3.1.

and the density of holes obtained by the phenomena of such ionisation will be:

_Eg-E,
p=Nye X =N,

From this equality we can find the position of Fermi level in the P semiconductor

Nye K =Npe KT 1.3.2.

thus, by using the same procedure we applied for pure semiconductors, we find :

Er ==AYEY + KT Ny
P 2 2 Nj

1.3.3.



EFpA oom temperature This formula shows us than at T=0K the Fermi
EC_ level is at the middle of the distance between
acceptor level and upper level of Valence Band. If

the temperature is increasing the Fermi level

shifts to the middle of the Forbidden Bend (see

Figure 1.8), if Na<Ny, as in the case of

Fig.1.8 "7 temperature higher than 100°K.
From Fig.1.8 we conclude that at room temperature all impurities are ionised. That means

that the density of “majority carriers” is

Pp » Na

At this temperature we have minority charge carriers too, generated by band to band
transitions of valence electrons (see Fig.7). The density of these carriers can be calculated

with the help of 1.2.10. equation

n2

Therefore ny, »—— 1.3.4.
Na

n Doped Semiconductors.

The same phenomenon of decreasing of ionisation potential is happening in an pure
semiconductor doped with elements from V th group of Mendeleev’s Table, like P, As, St. In

the Table 2 you can see the modified ionisation potentials of such impurities.

Table 2
P As Sb Bi
Si 0.045eV 0.049eV 0.039%eV 0.067eV
Ge 0.012eV 0.0127eV 0.0096eV -
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The diagram of energy bands of such

E semiconductor is shown in Figure 1.9.
c

L - In this case a donor level represents the

energy of ionisation. In this case the

EV— “majority  carriers” are electrons
because the probability of a jump from
Fig. 1.9 donor level is higher than the probability

Figure legend-e@¢lectron Chole Tjump
of a band to band jump.

The probability of ionisation of an impurity will be similar with Fermi-Dirac distribution,

if we did not take into account the degeneracy factor

therefore the density of ionised donors is

_Eg-Ep
NS =Npf3 (E) »Npe KT 1.3.5.

and the density of electrons obtained by the phenomena of such ionisation will be:

E¢-Eg
n=Nce X =N} 1.3.6.

From this equality we can find the position of Fermi level in the P semiconductor

EC-EF EF'ED

then, using the same procedure like in the case of pure semiconductors we will find :

. —ED*Ec KT Nc
Fo 2 2 Np

1.3.7.

This equation shows us than at T=0'K the Fermi level is at the middle of the distance between

donor level and lower level of Conduction Band. If the temperature is increasing upper to

11



100 °K, the Fermi level shifts to the middle of Forbidden Band because N. becomes higher

than Np. (see Figure 1.10).

By looking at Fig.1.10 we can see that at room
E |:'1 room temperatura

temperature, practically all impurities are

ionised. That means that the density of

“majority carriers” is

nn » ND
E, | o
— But at this temperature we have too, minority
T T Y >
100 200 T("—'K) carriers generated by band to band jumps of

Fig.1.10
valence electrons (see Fig.1.9). The density of

these carriers can be calculated using the 1.2.10. equation. Therefore,

2

n
Pn » i 1.3.8.
Np

1.4. Physical Phenomena in Semiconductors.

Conduction. Different from metals, in semiconductors two different kinds of charge carriers

participate to conduction phenomena: negative charge carriers (electrons) and positive
charge carriers (holes). In the presence of an electric field both charge carriers will move to
the direction of this field (electrons in the opposite way and holes in the same way of the field).

Then, in a semiconductor we will have two components of the current density:

jn =env, =enmyE 1.4.1.

jp = €epVp = epnbE 1.4.2.
where, v_. =mE and V 0 = rTF[E, are the drift velocities of charge carriers. These velocities
are proportional to the intensity of electric field E , the constant of proportionality representing

“the mobility” of the charge carrier, m

12



Then the total current density can be written as the sum of both components, given by

equations 1.4.1 and 1.4.2:
Jot =In *lp =ennnhE+epanbE 1.4.3.

Using equation 1.4.3. we can find the expression for electrical conductivity of the

semiconductor material:
1 - E - jtot —
bt =SE then, s = E e\nm, +pm, 144

o A An pure semiconductor has n=p =n,,

----- therefore the dependence of s function

Moo fem peratune .
Pt of temperature will have the same

shape as intrinsic density of charge

> carriers function of temperature, as it
Fig.1.11 T is shown in Fig.1.11, if we neglect the
temperature dependence of the mobility of charge carriers.
The dotted line represents the conductivity of metals. Obviously, this figure represents just a
qualitative plot of the conductivity. From this plot we can see the difference between metals
and semiconductors: in semiconductors, the conductivity increases exponentially with the
temperature, and at room temperature the conductivity of semiconductors is lower then the
conductivity of metals. This property is used in a number of passive devices, for instance in
thermistors.
In the case of extrinsic semiconductors the equation 1.4.3. remains valid, but the density of

charge carriers must be renamed in accordance with the semiconductor type.

In the <case of N type semiconductors the total current wil be:

Jtot =In *]p =ennﬁhE+epnﬁbE

13



and the conductivity in such semiconductors will be predominantly mediated by electrons,

since N, >>p,, ; N, » Np. Therefore:
SN »eNpm, 1.4.5.

Correspondingly, for the P type semiconductors the total current will be:

jtot =in *lp = enpme + epprTbE
and the conductivity in such semiconductors will be predominantly mediated by holes, since

Pp >>Np ; pp » N5 , therefore:

Sp » eNArT'b 1.4.6.
n(x) A Diffusion. If there is a density
gradient of charge carriers in a
n{x)+(dn/dxy | — - —_—
L R : , :
“— semiconductor’'s region (see
Nixe F--F= Fig.1.12), the carriers in the
nixJ-(dn/dxy /L - == - 4 - —
~~— densely populated region will
2 X Xg+Hl 2 Xyt i
Xl Xgl/2 X Xgth = XyTl X tend to migrate towards the

Fig.1.12 depleted areas. Therefore, a

carrier diffusion current will occur. At thermal balance, the motion of charge carriers (in our

example electrons) is random. Then, depending on the density of electrons on each side of

the section through the semiconductor at X, the number of electrons which move through the
plane at X,, in the mean free time (the time between two collisions) will be different. The

number of electrons passing from right to left, through the plane xis:

1 |,
New . = [n06 +1) +n0x) <" S 147

whereas the number of electrons that pass from the right to the left of the same plane is,

14



Nige =506 - D400 S 14

where | is mean free path, which it is assumed to be the same for both carriers, hence most
of the collisions occur with the lattice, its defects or impurities, and therefore is independent of
the carrier density. Factor % is given by the equal probability for the movement from right to

left or from left to right.
Then the total rumber of electrons, which pass through this plane, is the difference between

equations 1.4.8 and 1.4.7:

1 , 1laging .
NT:NL®R-NR®L:_[n(X0-I)-n(XO+I)]>4 S:'_gej_g q?"S 1.4.9
4 2edxg, T
This movement of charge carriers creates a current that has the density
. I - eN I
o=l Qe _ T ldn_ p,dn 1.4.10.
" S tS tS t 2dx dx

where the constant D is the so called “diffusion constant”. Using a similar demonstration we
can find the current density of holes:

dp

— 1.4.11.
dx

JDD =- er
The minus sign is determined by the gradient of charge density, which is negative and, at the
same time, by the charge of the hole €, which is taken as positive.

Generation and Recombination of charge carriers. The density of charge carriers can not

build up indefinitely in time, because at the same time with the generation phenomena there
are the recombination phenomena, which scale with the density of charge carriers. At thermal

balance, the generation rate must equal the recombination rate.

15



The recombination rate is proportional to the product of the densities of charge
carriers:

R =Const.” ngpg 1.4.12.

In the case of P type semiconductor py »Np ; ng =n, . Therefore equation 1.4.12

Po

becomes:
, Np
R =Const.” Nan, = t_o 1.4.13.
n

where t, is mean life time of minority carriers generated in excess.

In the case of N type semiconductor ng »Np ; pg =Pn, - Therefore equation 1.4.12

becomes:

p
Rp =Const.” Nppp = % 1.4.14.

p

where { D is mean lifetime of minority carriers generated in excess.

Then, if we have an excess of minority carriers, let that be in a P type semiconductor, from any

reasons, we can find the time evolution of this excess:

. P 2 (1 : : :
dp, =[G-R] dt butG= " — and R :pt—() then this relation can be written

p p

dp, _ P.(D-Pp,

dt

which is a first order differential equation, which has following solution:

p

t
ty

Pn(t) - P, = [pn(O)- pno]xe_ 1.4.9.

The minority carrier excess has therefore an

exponential decay in time, as shown in fig.1.13.

i
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1.5. Equation of continuity (Law of charge conservation).

Let there be an elementary volume in a

A
/S semiconductor (see Fig.1.14). Inside this
‘/ elementary volume we may have generation
| y I+dl
— 1 » I s———» phenomena, that takes place at a rateg and
! F g recombination phenomena, at a rate I' . In
dx .

this volume enters the current | and goes out

Fig.1.14

the current |+d|.
In this case the balance equation for the time variation of total charge inside the elementary

volume SdX can be written as:

edeE =- eSdxp +eSdxg - di 1.5.1.
Tt tp
In the stationary case jT_? =0:;dl=0pb f—o =g , thus the equation 1.5.1. becomes :
p
fp_ p-po_de dpu
L S E-D e 1.5.2.
qt tp dx g‘bp P axH

where we replace the total current by its two components (drift current and diffusion current)
. é dpu
I=j;S = E- eDp —,
itS = gepmyE - eDp S

Therefore, the final form of 1.5.2. equation becomes:

15.6.

Equation 1.5.6. represents the balance equation for minority p carriers in a N type

semiconductor, because the density of minority carriers is sensitive to accidental variation of

17



charge density. For that reason we can replace P by Pn . In a similar way we can find the
equation for N type semiconductors:

n Np - N din,E dn
ﬂp:_ p po-nh (P)_Dn p 1.5.7.
1t th dx dx?

The minus sign before the diffusion constant appears from the expression of diffusion current
for electrons.

Particular cases of continuity equation. Let there be a semiconductor of P type. The first
particular case is based on the following simplifying assumptions: independence of density to

distance (x axis) and null electric field. Accordingly, in the equation 1.5.6 we have:

fip
.”; =0 ; E=0 and the equation becomes:
.t
ﬂ;)tn _ . pnt Png which has the known solution p(t) - Py, = [P (0)- Py, |>e ' similar
p

with 1.4.15. equation, plotted in the Fig.1.13

The second particular case is: independence of the carrier density in time and null electric

field:
TPn
T =0 ; E=0 and the equation 1.5.6. becomes:
de Pn - Pn,
Dp 2 =
dx tp

X X

which has the solution p,(X) - Pn, = Ae b Be L

where we define L = ,/Dpt p Which represents the so called “diffusion length™ .

18



The constant A must be zero (since
the carrier density cannot increase
towards infinity with increasing x),
therefore from boundary conditions

- we can find the value of constant B:

» B=pn(0)- pp,

Fig.1.15 and now we can write the final form

of this solution:

X

Pn(X)- Pn, = (pn(o)' pno)xe e

that has the graphical representation plotted in fig. 1.15.

Chapter 2. P - N JUNCTION.

2.1. Physical Phenomenain P-N Junction

The P - N junction is formed in a bulk semiconductor, which is considered to have the
size larger then the diffusion length of charge carriers. Two different regions of doping are
created in the structure, one of P type and other one of N type. The boundary between these
two regions represents the P- N Junction.

Because this structure has a high gradient of majority charge carriers from P type
semiconductor to N type semiconductor, diffusion phenomena will appear at the boundary
between these two types of semiconductors. The majority carriers of P type, will diffuse to N
type semiconductor whereas the majority carriers of N type will diffuse to P type
semiconductor. But in N type semiconductor the holes are minority carriers, therefore a
phenomenon of recombination between holes and electrons will occur. The same phenomena
will occur in P type semiconductor between electrons and holes.

19



Following diffusion and recombination, in both sides of the junction, a “depletion layer”
will occur due to massive recombination. At the same time, there’s going to be a net electrical
charging in the region, because in these regions we will have only the fixed charges, the ion
charges. In this region an internal electrical field will appear and, of course, a voltage gradient
(see Figure 2.1). In plot a) we plotted the charge density in depletion layer; in plbot b) we
plotted the intensity of internal electric field function of distance; in plot c) we plotted the
voltage gradient function of the distance.

As we can see from plot (a), the charge conservation law can be written as:

eNaLyS = eNpLpS 2.1.1.

which can be further reduced to:

NaLn = Nolp 2.1.2.

To find the expression of electric field in the depletion layer of P type semiconductor we must
apply the Gauss law for the any S surface perpendicular to the positive x axis.

eNA(- L, - X)S

e

E(- X)S =

20



. P | N \ resulting in:
I D
AMEE O [+ n E(_X):_eNA(Lp+x)
& @ T 8 8 n
I e
0 E0 O3/
 ® @ 2.1.3a.
e Lp™ In the same way we can obtain the
pP(x) I , o
equation for the electric field in the
a) . direction of the negative x axis.:
L, 0 L, X
l eNp(L, - X)
: E(- X) = - P
E (x) : ©
b) ! >
| X 2.1.3b.
Emax E From the last two equations we can
V (x) : obtain the value of maximum electric
Vb: /'—
: | field:
A
/ : eNaL eNpL
c) | E o =- A . ZD7 _ E(q)

Xv
)
o

Fig.2.1

Figure legend: [—]negative ion: [ positive ion:
2.1.3c.
O hole @ quasifres electron

The value of the barrier potential can be

obtained simply by integrating the electric field over the length of the junction:

*Lp E .. (L.+L.)
Vb, =- 9 E(dx=- —= 2p i 2.1.4.
Ly

From equations 2.1.3c. and 2.1.2. we will obtain the final formula for the barrier potential:

) 2e B 2e

bo 2.15.

All these formulas are calculated at thermal balance.
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Relation 2.1.5. is used to determine the diffusion length of majority charge carriers

which diffuse in the region where they become minority charge carriers :

L L
eN DL% (1+ L—“) eNaL? (L—IO +1)
p n
V = =
bo e e 2.1.6.

From relations 2.1.6. and 2.1.2. we will obtain the final formula for the diffusion length:

1
é u2
é a 1
L. = é 2e a VE
P e 4 Np 64 Po 2.1.7a.
éeND 1+ —:U
e & Nagg
respectively,
1
é u2
é 5 a 1
~ e 7
L = ¢© u 2
éeNAgl+ L
é é Np J]s|

The diffusion of charge carriers will continue until the electric field created by this
charge displacement will build up to a value that will completely stop the charges on crossing
the junction. Once this equilibrium has been attained, the total current of holes, or electrons,

will be zero (assuming also thermal balance):

. . . d
th = Jpc + de = epmpE - erd_)F() =0 2.1.8a
. . . dn
Iny =In, *Iny = €NMp E+eD, ax 0 2.1.8b.
. , . . dVp o .
If we replace the electrical field with the voltage gradient ?E = - d—; we can integrate these
é X g

formulas. Let take as an example the formula 2.1.8a. :
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Pmpge- %L Dp dp ,  therefore: dp _ m_pdvb
e dx g dx p Dp

The latter differential equation has the following solution:

Mp
Inp=- —Vp + Const 2.1.9.
Dp

From the boundary conditions, we will find the value of integration constant:

atV, =0 Const. = Inpj, andat Vi, =Vp, p=pp,

then equation 2.1.9. becomes:

Mp

Moy,
Pn = Ppe P 2.1.10.

But at room temperature we have the following relations, presented earlier in this chapter, for

the density of charge carriers:

Em-Bwy ey
Ph = Nye kT , Pp= N, e KT where, at thermal equilibrium, EFn = E,:p . Then,

the ratio between majority carriers and minority carriers can be written as:
Ey,-Ev,
—F=-e KT 2.1.11.
This ratio can be obtained from equation 2.1.10. too, but in order to have an equality between

these two ratios it is required that:

Mp i o
—Vp, = = 2.1.12.
Dp 0

From equation 2.1.12. we will obtain the following relations between carrier mobility, diffusion

constant, and temperature:
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P

(neutral region)

N

(neutral regon)

-] | H

{deg! etion region)

EV

D
P KT 5113
mp e

while for electrons, in a

similar way,
Do _KT 2.1.13b.
Mn e

Relations 2.1.13. are

the o] called

“Einstein’s  relations”

for semiconductors.

The next conclusion

extracted from equation 2.1.10. is eV, = EVp - Ey,, ,» which shows us that in a such structure

( PN junction) the energy bands of semiconductor are broken or shifted at the level of the

junction, in order to have the same Fermi level on both sides of the junction (see Figure 2.2) at

thermal balance.

From equations 2.1.11. and 2.1.12. we can obtain the formula for the barrier potential

(which matches the maximum of the voltage gradient):

(:.‘Vbo

_a kT _
=e pVbO_

Pp
Pn

k_T np_p - klmM
Pn € ni2

2.1.14.

KT
The ratio — = V7 is the so called “thermal potential”’, and at room temperature has the

e

value:

V;=0.026 Volt (T = 300°K).
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2.2. The Current-Voltage Characteristic for the P - N Junction.

The density of charge carriers must be a continuos function over the whole length of the
semiconductor (see figure 2.3). We also determined, in chapter 2.1., that the diffusion length
of majority charge carriers, which diffuse through the junction, depends on the square root of

the barrier potential. Then, if we change this barrier potential by applying an external potential

P _ i — + i N
(neutral_reglun) | ' {neutral region)
Py e e &
Ny : : Py
L, 0 +Lp X
Fig.2.3

(voltage), we will modify these lengths and the height of barrier potential: Ly, = KV%/ 2 where

. . N NAN
the height of barrier potential is Vp, = KT 1 NaNp
e n

, at thermal balance. But the height of

barrier potential can be written as \, = Vb0 -V where the convention for external

ext’
potential is as follows:

Vet = - Vey if this is the so called ‘reverse biasing potential/voltage” (the positive

electrode of external source is connected to the N type semiconductor);

Vext = +Vex If this is the so called “forward biasing potential/voltage” (the positive

electrode of external source is connected to the P type semiconductor).
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The changes induced by the external voltage to the length of “depletion region”, the height of

“pbarrier potential” and the currents which flows through the junction are presented in Fig. 2.7.

Now, as you can see in figure 2.4, we can not change the dependence of density

charge carriers function on the x axis. Then, at forward polarisation, at the new diffusion length

Lp there will be an injection of minority charge carriers in the N type semiconductor, resulting

P

{neutral region)

P,=Na

N

n=Np

(neutral regwian}

0r(0)

Pn

v

'Ln 0 +LP

Fig2.4

in a carrier density
different from the
one at thermal
balance (a similar
process will take
place in the P type
semiconductor).

Now, if we take the
origin of X axes on
the boundary of

depletion region, we

P

will be in the conditions of the “equation of continuity” particdar case E=0; — =0,

where the solution is:

Pn(X) - Pny, = |bn(o)' pno]xe -

Then the diffusion current that will be established can be written as:

dp er[pn(o) - pno]xe e

X

X

jp(x) = - er&

taking into account the equation 2.2.1.

Lp

1t

2.2.1.

2.2.2
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A similar expression will result for the electron component of the current. But the density of
minority charge carriers can also be written as:
B eVb e(Vbo - Vext) evext

P =ppe KT =pe T =p,ekl 223

Therefore the final formula for the current given by holes being:

A eVeXt ¥ _l
Jjp(X) = L—@pnoe KT - pyixe ™ 2.2.4
p e U
€ u
while for electrons it will be:
eD é eVext o X
i - N a kT ; L
jn(X) = n, e - Ny uxe 2.25
n € u
€ u

The total current is the sum of 2.2.4 and 2.2.5. But this current does not depend of the X

abscissa. Then we can compute this current at x=0

z -2 eVeXt 0
eeDpPn, . eD,n, u® —=t ¢

jt = const. = jy(x) + jn(x)|xzo=(f : E Po L:Jge KTo17 226

If we multiply the equation
2.2.6 with the cross area of
the junction, we will obtain the

current-voltage characteristic

P or so called “Volt-Ampere

Vext
characteristic” of the ideal
Fig.2.5 diode:
2 Vext o
| = Ioge KT 17 2.2.7.
e [}
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The plot of relation 2.2.7 is given in Fig 2.5, where the negative current axis has been
magnified several orders of magnitude with respect with the positive axis.

The current |, is the so called the “saturation current” or “reverse current” through the junction.

The value of this current depends on the parameters of the crystalline lattice and temperature.
For Silicon, values of nanoampers are common, and for Germanium lattice, values of

microampers are common for the saturation current. This current is mediated by the minority

carriers, and its expression can be determined from equation 2.21. :

lo = ?e[?fp”" " eDL”npO gS 2.2.8.
e p n g

I, 4 The opening potential of the diode, V, ,is
defined as the forward biasing voltage for

which the currentis 1 mA.
In practical applications and circuit analysis,
the plot of current function of forward biasing
V}, Fig.2.6 V; voltage is approximated by a linear

dependence of the voltage on current above a

threshold, as you can see in Fig.2.6.
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(neutral region) | | = +
1

N

(neutral reqian)

» depletion region 1
: te thermal balance :
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Shift
R, down

b e 0 00
— JE———
0 TEVErSE pelarkaiin

Fig.2.7
Figure legend: thin arrows = minafity charge carriers currents
large arrows = majority charge carriers currents
O hole;@ quasifree electron
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2.3. Capacitance Effects in the P-N Junction.

We determined in paragraph 2.1 that the diffusion length is proportional with the square root

of the barrier potential, at thermal balance, as shown in the following formulas:

1 1
é u2 e u2
é 2 a 1 é ) a 1
A e . = A e . -
Lp, = ¢ Y V2 andL, =°% UV2
° @& & Npou 0 ° @& & Npou ™0
éeNDgl+ — 1y éeNAg + 25
g e A o8 8 & Nbgyg

If we biased the junction with a reverse potential, the height of barrier potential will

increase to a value vy, = v, + Vo, and the diffusion length will increase:

1
é u2
é 2 a
A - /2
Lp =2 " (Vbo "'Vext)l
€ & Npou
é e A 2
1/2
&V, 0
equation which can be written, if multipied by ¢——~ | in a new form
¢Vp. =
e 'bog
/2
e o)
L, = Lp 61+ Ve 2
O¢ A/
e bo @

(we have considered, in the last two equations, the external voltage as negative).

We can obtain, in a similar way, a mathematical formula for diffusion length of electrons:

/2
& \y 0
_ Xt -
Lo = Ly 81+ 25
e bo g

Now if we define the dynamic capacitance of barrier potential as

_dQ

Ca =
B dv

2.3.1.
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we can calculate its value in the following steps:

dQ _ dQ dL, dQ
= = . but =eN,L,S , then —=eN,S and
BT AV dL, dv Q= efuby di, "
de B e
dv e Npo
eNA 1+_:Lp
e D@
then:
12 -1/2
e (0] (0]
Cg = eS - = eS = eS cl+ Vextj = CBO ¢l+ Veth 2.3.2.
L $l+ N_A9 Lp +Ln (Lpo * I‘no )g Vbo 2 Vbo 2
e N

The formula 2.3.2 gives us the value of barrier capacitance of the P-N junction, which

looks like the formula of the capacitance of a plane capacitor. This capacitance is a

characteristic of every diode at reverse polarisation.

This property is used in a class of special devices, called varicap® diodes, which are

P N
(WEUtrﬂLﬁQim) {neutral region)
B A n=Np
pP nn
p{0)
npﬂ Pn
pF.

1 VARIable CAPacitance

used like capacitors
whose capacitance
is controlled by the
applied reverse
voltage.

The common
value of this
capacitance is lying

in the range 5-20
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Now let us see what will happen if we forward bias the P-N junction. In this situation we
will have an injection of minority carriers in a region in which they are in excess (see fig.2.8
which is similar with Fig.2.4)

The area below the curve, which describes the density of excess minority carriers in neutral
region, will represent the amount of charge injected in these regions. From the equation of

continuity we will obtain:

X X

L, Ly
Pn(¥)- Pny = Pn(0) - Pry)xe P b Py(x) = Py(0)e 2.3.3.
Then, the amount of charge injected in neutral region of N type semiconductor is:

+
X ¥

+¥ —

Q= ¢ eSP,(x)dx = - LyeSP,(0)xe P| = eSP, (0L, 2.3.4.
0
0

The dynamic capacitance is defined by the formula 2.3.1, therefore the capacitance can be

written as:

dQ
Cp = =2 - esL
D= av P

dPn(0)
av

2.35

Now, if we take into account only the hole component of the total current which flows through

eSDpP,(0) Lp I
————p Pn(0) = ——1p . we can calculate the derivative of P, (0)

the junction, i.e. |, =
p eSDp

function of voltage:

dPn(O) _ LD dlp

P 2.3.6.
dv  eSDp dV

Now if we replace the expression 2.3.6 in the equation 2.3.5 , we will find the value of the so

called "diffusion/storage capacitance of holes" :

L2 dl
D = _P P 2.3.7.
P D, dVv
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In a similar way we can calculate the "diffusion/storage capacitance of electrons™:

2
L dy,

= —1 2.3.8.
° " p, dv

The value of this capacitance is higher than the barrier capacitance. Values of 100 pF, or

more, are common for this capacitance.

2.4. Dynamic resistance of the diode.

We can define, at forward bias of P-N junction, the dynamic resistance by next formula:

1 dl
—=0=— 2.4.1.
Iq dv
The ideal diode equation can be approximated, at forward bias voltage, by:
> eVext 0 eVext M
| = Ioge KT - 175 0ge KT = 1ge VT 2.4.2.
e [
Then the equation 2.4.1 becomes:
I
g= — 2.4.3.

By looking at Figure 2.9, you can get a

feeling of what is representing this

"conductance” on the plot | function of V :
The slope of the tangent line in the

point "I" to the curve which represents the

P current through diode function of biasing

voltage, is the characteristic "conductance
for the diode at current "I".

The "conductance" is defined as the inverse of "resistance", as in equation 2.4.1.
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2.5. The Zener Diode.

e Yext b

In the equation of ideal diode | = que I,

c

e

the saturation current is an important parameter of the diode and has the following

5
L i. Asyou can see, this current is function of minority
P N g

aeDpp,, . eDyn

expression: ly = Sg Po
&

charge carrier density, which is a constant at a given temperature.

2 2

n; n;
Since py,, = —— and Np, = — | the expression of saturation current becomes:
Np Na
D D & D & Yoo
e o e 0
lp = eSg—r—+-—1—:nf = Const’ g—E—+ ——:" T’e Vi 25.1.
éLpNp  LyNa g éLpNp  LyNa g

but the diffusion constants are inversely proportional with the temperature, then we can rewrite
2.5.1in the final form:

Yoo

lp =Ko T2 T 25.2.

Then, for constant temperature we expect to have constant current. In practice, this formula

holds only for moderate reverse voltages (see Fig.2.9).

gﬂ / While increasing the reverse bias voltage
= applied to the diode, the current is constant
z V: up to a threshold voltage, called the
“breakdown voltage”. For voltage values
larger than breakdown voltage, the
Fig.2.9

saturation current increases abruptly. This

behaviour of the saturation current may have two different origins:
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- the avalanche multiplication of minority charge carriers (classical phenomena) which

can occur at voltage higher than 100 V ;

- the tunnelling of bounded charge, through the barrier potential, from valence band of

P type semiconductor, directly to valence band of N type semiconductor (quantum

phenomena), which can occur at voltage lower than 100V.

Irrespective of the actually breakdown mechanism, the diodes which work in this

regime are called “ZENER diodes”, and are generally used in voltage stabilisation.

P N P N
F(;p [ XE 3
I::_/: L0058 %
A)
oDo EV-.
P N P N

Fig.2.10

_io o !

Figure legendcurved armaws = diTusin cumanls: siramghl arraws = nnelig curranls

o hala; 9 quasiires aacian

2.6. The Tunnel
Diode.

The tunnel diode
is a special device that
works at very high
frequencies (more than
500Mhz). This diode is
made in a form of a P-
N junction with a heavy

doping of both

semiconductors (N,

and N_ higher than

19 3
10 cm ). In these
conditions the width of
the barrier potential is

very short, and the

Fermi level, at thermal balance, lies in the valence band of P type semiconductor and,

correspondingly, in conduction band of N type semiconductor (see Fig.2.10)
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Figure caption:

A) Thermal balance;

B) Forward biasing voltage (tunnelling current is increasing)

C) Forward biasing voltage, higher than in the case B (maximum tunnelling current)

D) Forward biasing voltage, higher than in the case C (tunnelling current is zero)

The current-voltage characteristic is shown in Fig.2.11. We can see in Fig.2.11 four different
regions of this plot.

Region 1: here the reverse current increases rapidly, because all electrons which are in
valence band d P type semiconductor are tunnelling through the barrier potential because

they “see” unfilled states in the conduction band of N type semiconductor, upper than the

Fermi level.
Region 2: At a small forward

| A
biasing voltage begins a
1 2 34 movement of majority carriers

over the barrier potential, like in

> a normal diode, but this current

\4 is in concurrence with the

Fig.2.11 “negative current” generated by

the “tunnelling effect”. When the tunnelling current becomes predominant, the current through
the diode moves in region 3 (case B in Fig.2.10)

Region 3: The tunnelling current is higher than the “normal” current, therefore the current
through the diode decreases with the bias voltage increase, until a minimum value (at the end
of region 3), at which the tunnelling current is maximal (case C in Fig.2.10). In this region the
diode is characterised by a ‘hegative dynamic resistance” (the slope of this part of the

characteristic is negative, as you can see).
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Region 4: With the increasing of the voltage, the energy bands of N type semiconductor are
shifted more to upper energies, and the region with free electrons from conduction band of N
type semiconductor begins to look at a region of forbidden band, then the tunnelling effect
decreases, until this effect vanishes (case D in Fig.2.10.) and all the current through the diode

will be a normal forward biasing current.

Chapter 3. The Bipolar Junction Transistor (BJT).

3.1. Phenomenological description of Bipolar Transistor.
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The Bipolar Junction Transistor (BJT)? or simply Junction Transistor, has the structure shown

in Fig.3.1.

Fm.3.1.

Figure legend: large arrows= majority charge carriers currents
thin arrows= minority charge carrers currents

As you can see in Fig. 3.1, the currents which flow through the bipolar transistor, in the
conditions of forward biasing of E-B junction and reverse biasing of C -B junction, are:
e =lpe +Ine i lc =lpc +lcy ilB = - lc

We can define the following "transistor's constants" :

I
The efficiency of emitter: g = % (the ideal value of this constant is 1)
E

%Invented by Shockley
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: « : : :
The carrier factor: b = IP—C (the ideal value of this constant is 1)
PE

The currentgain: a = € G (the ideal value of this constant is 1)
E

From the last relation we can find the "transistor's equation”

IC =a IE + ICO 3.1.1.
In practice the current gain constant has values among 0.95 - 0.999 . Then we can use the
approximate relation :

IC » aIE 3.1.2.

Like in the case of P-N junction, such a device must be built in the same piece of
semiconductor material, in order to assure the continuity of the crystalline lattice. Any defect in
the lattice would greatly impair carrier mobility and would distort the energy bands. The
mandatory conditions for having such relations between currents, then to have a “transistor
behaviour”, are:

- the doping of Emitter is higher than the doping of the Base, i.e. NA(E) >> ND(B)

N P N - the base is thin enough that the
Emitt \
T Erlf—', —— ﬁ/{’ ---- ) Collector diffusion length of minority charge
]IBHSE carriers which are injected in Base is
Q G o o0——
-+ 1 -
VEEI = VCB higher than the width of neutral region of

the Base, i.e. Lp > W

J, @ $
\/ In Fig. 3.2 we represented the case of a
VEB? ?VCB
1

NPN transistor, biased in the active

regime (Emitter junction forward biased
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and Collector junction reverse biased). In this case all currents have inverse directions
compared to the case of PNP transistor. Now, if we take into account the equation 3.1.2., we
can approximately calculate the power gain of this device.

Through the junction of emitter, characterised by dynamically resistance ry < 10w flows the

current Iz . Then the input power, dissipated on this junction is

2
P » lerg
The output power is the power dissipated on collector junction, which is reverse biased, then it

is characterised by a higher resistance R¢ > 10%w. Then the output power is approximately
2
Pout » IcR¢C
One has to note that these values are not the actual total power dissipated on the emitter and
collector, since y and Rc are not the static resistances, but the dynamic ones, related to the
AC signal. Therefore P, and P, will be AC signal powers at the input and output. The power

gain is going to be:

2 2
Pot _ IcRE  alR

G= Cs 104

2 2

Pin IErd IErd
Now, from the last relation we can understand why this device was called "trans-resistor" or
"transistor” . This device makes possible the transfer of a current which flows through a region
with low resistance, in a region with high resistance, without a sensitive modification of the

current.

3.2. The analytical equations of transistor’s currents.

The emitter current has two components, as we saw in last section. The electron component
of this current must have the same expression like the electron component of an ideal diode,

therefore:
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v i
AeDn, & EF ©
|, = ——PoSeVT_q 3.2.1.
E L

. § 2

e 2

In this equation we will annotate the diffusion length of electrons in neutral region of emitter by

Le and the density of minority charge carriers in emitter by ng . With these new annotations,

formula 3.2.1 becomes:

V. .
AeDpng, T - 2

| = — o SeVr g7 3.2.2.
: Le & H
e (%]

To compute the hole component of the emitter current, we must take into account that this
current is a diffusion current in a neutral base region, where it is a minority carrier current.

Therefore, the expression of this current is very much alike the formula of a diffusion current:

=-eD, — 3.2.3.

But already we know the expression of the density of minority charge carriers injected in a

neutral region:

X

Pn(X)- Pp, = Ke 324,
Because the transit of these charge carriers through the neutral region of the base is fast, due
to the small thickness of the base, (W < Lp ) we can approximate the equation 3.2.4. by:
Pn(X)- Pn, = Ky +KoX 3.2.5.
Then, by replacing 3.2.5 in 3.2.3., we will o btain :
Jpe = - €DpK; 3.2.6.

We can obtain the values of constants K1 and K2 from the boundary conditions of equation

3.2.5:

at x=0, we have

41



Pn(0)- Pn, = Ky 3.2.7.
and at x=w , we have:
Pr(W) - P, =Ky + Kow 3.2.8.
But the density of the injected carriers at x=0, which represents the boundary between the

space charge region of emitter junction and neutral region of the base, is given by:

Ve
%
Pn(0) =py, " 3.2.9.
Now, if we replace the 3.2.9. in 3.2.7. we will obtain the value of the K1 constant:
eV o
pno§ eV - 1] 3.2.10.
o
In the same way, taking into account that:
Ve
_ VT
Pn(W) = Py €
we will obtain from equation 3.2.8. the value of the K2 constant:
e Ve b ®YE o
Q eV ¢V -
pno T 1+ pno eT'1+
.
Ky = 3.2.11.
w

Now, if we replace the value of K2 constant, given by 3.2.11. in 3.2.6. equation we will obtain

the value of holes current which flows through the emitter junction:

e Vo 0 e Ve o
9 % 9 eV -
pno T- pno - 1+
g E .
l,. =-eD,A 3.2.12.
PE p W

Finally, the total current which flows through the emitter can be expressed as:

42



. e YE 0 e Yc 6

B _ éeADNg, eADypy, g Ve 4t eADypy, ¢ VA
=1+l =& + we'’mT-1.-————="e'T-1. 3213

S w6 H W o

é E a ; ¢ -

e a e (%)

In the same way we can obtain the expression for the collector current, which is given by:

IC = IpC + ICO 3.2.14.

The saturation current is like the electronic component of the current of an ideal diode:

eV -1 3.2.15.

Now, if we neglect the recombination phenomenon in the neutral region of the base, i.e.

pe ” Ipc » the sum of 3.2.15. and 3.2.12. equations will give us the expression for collector

current:

Ve b e YE b

6éeAD, n eAD E—= 2 eAD - 9

o= +1. =- " Co , pPno SeVT 17, ﬂgevT -1 3.2.16.

C Pc CO e L W U(;, : W g +

& C a¢ + +
e 9 e 9

The equations 3.2.13. and 3.2.16. represent the analytic expressions for currents which flow

through the transistor.

These relations can be written in condensed forms such:

eVYE © e Ve b
IE = allgeVT - 1_+ alzgeVT - 1_
+ ¢ =
€ 2 € e 3.2.17.
& VE b & Ve b
IC = a21ge T . 1++ azzge T 1+
% - % -
é @ é @
where the coefficients a, j are:
B eADng, eADyp,, _ eAD ,p,,
ap = + y Qo = ——————
Le w w
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_ €ADp,, a o aeADnc | . eAD ,py,
apy = 22T 8
e

3.2.18.

Q IO

Lc w

The relations 3.2.17. are so called "Ebers-Moll" relations.

3.3. Ebers-Moll Model of Bipolar Transistor.
Taking into account the equation 3.1.1. and the general equation for k., the reverse current of
the collector towards the base junction, the general equation 3.1.1 can be written as:
Ve
lc =a\lg+ ICO(expV—- 1 3.3.1.
T
where ay is the current gain under normal conditions of biasing (emitter to base junction
forward biased and base to collector junction reverse biased). Now, if we take the transistor
like an reversible device and reversing the biasing, we can rewrite the 3.3.1. as:
V
le = -aglc +lgo(€Xp —=- 1) 3.3.2.
Vy
where ar is the current gain in reverse conditions of the biasing, having lower value than an
because the transistor doesn'’t
gl oyl
/\\ 7N work in normal regime.
(d,/ \/)_ |c The 3.3.1 and 3.3.2 relations can
—
o— “© pe used to describe a simple

E N I<] C model of bipolar transistor, named

+ VE i I + Vc; i} ':bers—MoII modef", shown in
l B 0.3.3. where Vg is the forward

Q bias of the emitter and V¢ is the

B reverse bias of the collector. Then

Fig.3.3 the first terms of 3.3.1 and 3.3.2

relations are represented in the Ebers-Moll model as constant current generators and the
seconds terms of these relations are represented by the currents which are flowing through
two equivalent diodes, first one biased with Vg, and the second biased with V. Now, if we
take into account that the current given by constant current generator aglc is lower than the
current given by the constant current generator a nle , and the reverse current of the equivalent

diode of the collector junction is very small in comparison with the current given by forward
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I Gyl - | biasing equivalent diode of the emitter junction,

R .\/;:/‘—_’e the Ebers-Moll model can be simplified as in
E  + v. -| + V.. ©CFg3sa

l ! Using the model showed in Fig.3.4, the

demonstration of the power gain given at the

FE;.# beginning of this chapter becomes even easier to

understand.

3.4. Static Characteristics of Bipolar Transistor.

The most common connections for the bipolar transistor are the "Common Base

Connection" and the "Common Emitter Connection”, named this way because the Base,

|-
© :
O, -

4—
& £ DUTD‘U'
Inprit ) Output X >
\ Input f
Vi v,
v
£ <, + <

@

Common Base Connection Common Emitter Connection

Fig. 3.5

respectively the Emitter, are connected to the common connection between input and output,
connection which is conventionally taken as ground.

In Fig. 3.5 are shown these two basic connections of bipolar transistor. Each one is
characterised by two input connections and two output connections. Then we have four
terminals, of which two of them connected to the common ground. For that reason, such a

device is named a “four-terminal network”. The behaviour of such device can be

characterised by the input and output currents and voltages. Usually we take as independent
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variables the current of input and the voltage of output. In this way we can write the dependent

variable (voltage of input and current of output) function of the independent variable.

VBE = fl(IE’ VCB )’IC - fz (IE’VCB) will be the relations for CBC four-terminal

network, and

VBE - fl(lE’VCB);IC = f2 (IE,VCB)WiII be the relations for CEC four -

terminal network.

A

o Iy

S 4 e T
-J --------- E"_"""J:"":SU ---------------------- ! : ! : ' '

N

-----------------------------------

L i—oma

L L—TmA

01 02 03 04 Vg V) 1 2 3 4 5 6 V4V
Input Choracteoristics Output Chaiactoiistics
Fig. 3.6

In figure 3.6 you can see such characteristics for CBC circuits, and in figure 3.7 for CEC
circuits.
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The way we defined the current gain for CBC connection, the relation between the input

current and the output current is provided by the following equation:

lc =alg+1¢ 3.4.1.

This relation is so called "the device equation” for the transistor in CBC connection.

In the case of CEC connection the "device equation” can be found by replacing the emitter

currentby : Iz = I + |z . In this case the equation 3.4.1. becomes:

lc =blg + (b + 1)l 3.4.2.

is the current gain in the CEC connection. A typical value for b is 100.

where b =
- a

The biasing circuits for bipolar transistor.
In the case of CBC connection

7 N
— )
| we may have a biasing circuit

I
R, Rc

comprising two d.c. sources, like in

- cL + Fig. 3.8
_ Ve

EE 4 -
? ? In the transistor's active region, the

V

junction E-B is forward biased and the

junction C-B is reverse biased. Under
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the assumption Veg>>kT/e=V , we can infer that the emitter current is higher than the reverse

collector current Ico , then we have in a wide range of values for the I the relation
Vegg @const 3.4.3.

and the equation 3.3.1. becomes

IC » aIE @IE 3.4.4.

The equations 3.4.3. and 3.4.4. represent the "device equations". Now we will write the
"circuit equations", which will be the based on second Kirchhoff's law for the input and output

circuits:
Vee = Ve + IcRe 3.4.6.

From 3.4.5. we can calculate the value of Iz for a given circuit:

V,
le @% = const 347.
E

assuming that Vgg>>Veg .
Then, if we take into account the relation 3.4.4. , we can assert that |z » I = const,

The equation 3.4.6.

<
55‘-‘ l.=V../R, represents the so called
4\ "load line equation”, from
Load li
\/ ine =3mA .
3 which we can calculate the
Q l.=2mA
1.(CQ2) bias voltage of the C-B
1 L=1Tm#A
\ junction.
Vo) Ve VelV)
Fig.3.9
Vg = Ve - IcRc 3.4.8.
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The intersection between the load line and the output static characteristic corresponding to
the emitter current calculated by equation 3.4.7. represents the so called "static operating
point" for the transistor. This point is marked in fig.3.9 with a Q letter. In this point the bias
voltage for C-B junction is provided by equation 3.4.8.

Equations 3.4.7. and 3.4.8. prove that the CBC connection is the most stable
operating configuration of kbpolar transistor. This is provided by the fact that we
control the output current Ic with a current Iz , higher than the residual current of the

collector and the gain current a is approximately constant, having values in the range

0.98-0.99.

The circuit for the CEC connection, which is by the way the most usual circuit, is shown
in Fig. 3.10. The biasing circuit is commonly called "voltage divider biasing" or “universal
biasing” circuit, because the resistors R; and Rs, provide the biasing of EEB and C-B
junctions using a single power supply.

In this configuration, the situation is quite different as compared to the CBC connection

because the current gain B may have a wide dispersion over individual transistors. If a is

0.98, B is 49 while if a is one percent higher, 0.99, B is 99.

For this configuration the "device equation" is given by eq. 3.4.2, but usually for Silicon
transistors is used the simplified formula

Ic @b IB 3.4.9.
The voltage divider biasing circuit showed in Fig.6 has an equivalent d.c. circuit which is used
to find the circuit equations. To obtain this equivalent circuit we must use next steps:
1. We will assume all capacitors having "infinite resistance";

2. We will apply the "Thevenin's theorem™ for the voltage divider biasing circuit;
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Figs 1l ¥

In this case the equivalent circuit of Fig.3.10 is the circuit showed in Fig.3.11.
Now if we write the second Kirchhoff's law for input and output circuits of Fig.3.11, we will find

next equations:

VBB = IBRB + VBE + IERE 3.4.10.
VCC = ICRC + VCE + IERE 3.4.11.
RBlRBZ VCC
where RB =——  _—_  and VBB = RBZ as result from Thevenin's

Rgi1 + Rpo Rp: + Rp»
theorem. The equations 3.4.10 and 3.4.11 are the "circuit equations” for CEC connection. If

the resistance Re=0, from relations 3.4.10 we will find that

|, = VBB B VBE
B — —R 3.4.12.
B
and using relation 3.4.9, results that:
| = b(Ves - Vie)
Cc ~ 3.4.13.
RB

But p may have a wide dispersion, then for a given base current we can have a lot of output

currents. In this case the "operating point" of the transistor is not stable. To prevent this
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situation it is necessary to hawe the condition RE 1 0. In this case the equation 3.4.12.

becomes:

_ VBB - Ve
Rg +Re(b +1)

lg 3.4.14.

(in equation 3.4.14 we take into account that le=lc+ls=ls(b +1), if we used the relation 3.4.9.)

In this case equation 3.4.13. becomes:

_ b(Vgg - Vge)
CcC ~ 3.4.15.

Rg +Re(b+1])

Now, if we have met the criterion
Re( +1) > Rg , 3.4.16.

the output current Ic becomes independent of b, then the "operating point” becomes

stable, and the equation 1.4.15. becomes:

b(Veg - Vee) b(Vas - VBE)» Vgg - Vee

) 7 = const. 3.4.17.
" Rg+Reb+1) Relb+]) R
<4 )
E e 1=V /(R+aRy) ,=120uA
,=90pA

«— Loadline

3
lg=60UA
1,=30p.A
~ =0 pﬁ\»
VBI:(Q) VCC VCE(V)

Fig.3.12

Because the current gain in CEC is large, we can approximate b+1 » b.
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The equation 3.4.11 represents the "load line equation” for CEC of bipolar transistor. In
Fig.3.12 you can see the output characteristics for CEC of the bipolar transistor and the
operating point, obtained in the same way like in the case of CBC.

3.5.The stabilisation of working conditions for bipolar transistor.

The output current of CBC or CEC circuits is the collector current. The value of this
current is function of temperature by his dependence on: saturation collector current I, , bias
voltage of the E-B junction Vge and the current gainb .

Then we can write that

IC = IC (ICO ’VBE ,b) 3.5.1.
where each variable depends on temperature following a common law:
_ axT;- Tp)
lco(T) = Ico(To)e
where E:BOOOK; the value of the constant a depends on the nature of the semiconductor,

being hgher for Germanium which has the gap energy (width of the forbidden band) lower

than Silicon.

6, Iq-T
b(T) = b(Tg)xegl + ——=
e

c/

K

O

where the value of constant K is 100 for Germanium and 50 for Silicon.

TVae
1T

The strongest dependence on temperature is for the saturation current, because this current is

-.22mv/°C

provided by minority carriers, and the their concentration depends exponentially on

temperature.

Now, if we take the derivative of expression 3.5.1. with respect to temperature, we will obtain

the following equation:
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Mle _flc . fleo . Tlc . 1Vee  flc. 1b
= + + 35.2.
1T  1leo 1T  1Vge 1T T 9T

where the coefficients of the temperature derivatives are the so called “sensitivity factors”:

|
e g Me _g Me_g

flco TVage b

The sensitivity factor of current S, is the most important, its minimisation leading to the

minimisation of all other factors.
In the aim to find the expression of S, , we must calculate the next derivative:

1
C

from which we can obtain :

b+1
S| = TN 35.3.

1- b—2
Tlc

s

The value of the derivative ‘ﬂl— depends on the type of
C
B Fig 3.13 circuit used for biasing the transistor.

The simplest biasing circuit is shown in figure 3.13. The
base current is given by the next relation :

_ Vec - Vee
RB

||3 , Which can be found by writing the second Kirchhoff's law for the input

circuit. Because Vcc >> Vee We can ignore the value of Vge in the expression of Is, therefore it
results that the base current is constant, and, as consequently, its derivative with respect to I

is zero. In this case the equation 3.5.3. becomes

S|:b+1
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which is a large value, therefore the sensitivity with the temperature is very high. This circuit

has a bad stability function of temperature.

A good stability with the temperature has the circuit shown in Fig.3.14.

+VCC Using the second Kirchhoff law, we can write the next
RC equation:

ignoring the Vge voltage because it is much smaller than V¢c

, we will find:

Re Tlg Re
. C b -

Than, if we replace this derivative in 3.5.3. equation, we will find:

lg =

Fig3.14

b + 1 RC + RB
Sy = R » which has values in the range 3 to 10, depending on
C Rc
1+b——
Rc + Rp

the values of resistors used in the circuit. This is a low sensitivity, resulting in a good stability
of the circuit with respect to the temperature variations. In the particular case Rg=0 we get the
best sensitivity value, S;=1, but in this case the transistor has the GB junction shunted.
However, such a circuit is used to stabilise the second transistor. This method of stabilisation
is called "current mirror stabilisation".

The best value, that means the lowest value for S, , is obtained in the case of voltage divider

biasing circuit shown in Fig.3.15
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¥
%

Fig.3.15

From the d.c. equivalent circuit, discussed earlier in this chapter,
we can find the value of k as a function of the Ic current

Re

g = - —————1
B RB+REC'

Then the expression 3.5.3. becomes:

b+1 RE+RB
SI = R »
1+b—0F — Re
RE + RB

which may have typical values inthe range 2 to 6.
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Chapter 4. Small Signals Operating Regime.

Notation Conventions for the Dynamic Regime.

In the dynamic regime we have in our circuit both currents and voltages to look at. In
general currents and voltages are designated by capital letters | or V having a subscript which
represents the letter characteristic for the transistor terminal (E for emitter, C for collector and
B for base). The a.c. components are denoted by italic small letters having small letters as
subscripts, designating transistor terminal, as in the d.c. case (e for emitter, c for collector and
b for base). Then, the d.c. collector current is noted by I and the a.c. collector current by i .

The sum of both components is denoted by italic capital letters as you can see in the

following example: I, =i. + Ic

/ r =120,
Al :j
1.=90uA
¥ =60uA
e —30A
- E E 1=y
t Vi VirlV)
I
i N
o
—~ i

Fig.4.1

In figure 4.1 you can see a graphical analysis of the common emitter amplifier in

dynamic regime. The input signal is applied in the base of the transistor, which has the static
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operating point Q given by the intersection of load line with the static characteristic for the
base current 60 nA. This case will result in a total output current/voltage signal I. and V. as a
function of timet that can be seen on lower left panel of fig.4.1.

As you can see in Fig.4.1, a small input signal (current or voltage signal) is amplified
by the transistor. The usual unit for the gain of an amplifier is the decibel, defined as:

Number of decibels = 10log Pout/Pin

If the input and output power of an amplifier is measured on the same resistor, the

definition for the decibel becomes:
Number of decibels = 10log Pou/Pin = 1010g (Vou)/(VinY’ = 20l0gVeu/Vin

But, in spite of not being technically correct, it has become customary to define the
decibel voltage gain of an amplifier in terms of the voltage gain, even that the input and output
resistances are not equals. Therefore, last formula becomes:

Decibel voltage gain = G, = 20 log A

4.1 The Small Signals Model for Bipolar Transistor.

Al Al, The behaviour of fourterminal
— 4 —
f The transistor in eny "\ network, as a general class of
. AV. canactson AV

S.I ' GI.J circuits, can be characterised by

linear equations only for small

signals. This affirmation can be demonstrated using the Ebers-Moll equations of the

transistor, written for total current (both components):

e Ve o) @& Yo o]
I, =a,%" - 1"+a,%" - 1*
¢ : ¢ :
e 7] e I}
® 0 @ Yo o]
. = azlgeVT 1T+ 3-22(;(:"\/T - 1?
& s & o
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where le=lte + ie ; Ve= VE + Ve and V=Vc + V¢ according to convention adopted in the
beginning of this chapter. For small signals, the amplitude of a.c. components is small enough
to allow us to keep only the first order terms from the Taylor (power) series in which can be

approximated the exponential of a.c. components. Let's take as an example the first Ebers-

Moll equation:
VE +Ve Ve Ve +Ve Ve
& V o} V. & V o
e Vi @eVT 81+ & .5 respectively e Vi @evT 81+ Bl CE
& Vv o & V o

T T

Grouping the terms of d.c. and a.c. components we will obtain the following equation:

®Ve 0 ®Ve 0 Ve Ve
¢ - ¢ - \%} v
lg =ajpce’™ - Lo+ apee’™ - Lo+ ajem —& +ape’t
c + c + %) \%5
e %) e [7]
where the first two terms represent just the d.c. component of the emitter current and the next
two terms represent the a.c. component of the emitter current.

Now, by differentiating the above equation, we obtain:

Dig = Y11DVe + Y12DV¢ 4.1.1.
Ve Ve
V.
1e’T ape’’
where yqq = i1 and y1o = 11
Vr Vg

Using a similar method, we can obtain the equation for small variations of the collector current

given by the second Ebers-Moll equation:
Dic = Y21DVe + Y22DV¢ 4.1.2.

The equations 4.1.1. and 4.1.2. define the so called “admittance parameters”, determined

using the next equations:
Di : : :
Y11 = = » Which represents the “input admittance”
DVe DV, =0
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Dig

Y12 = , which represents the “reverse transfer admittance”
DVc DV, =0
Di : ,

Yo = —< , which represents the “forward transfer admittance”
DVe DV.=0
Di _ :

Yoo = ¢ , which represents the “output admittance”
DVe DV, =0

The equivalent circuit described by relations 4.1.1 and 4.1.2 is drawing in Fig.4.2

E

Bo
Fig.4.2

This “four-terminal network” represent the equivalent circuit for CBC of the bipolar transistor
using admittance parameters. As you can see, the equivalent input circuit of the transistor
according to the equation 4.1.1. comprises the input admittance yi1 and the constant current
generator y;,V. which represents the influence (feedback) of the output circuit to the input
circuit. Similarly, the equivalent output circuit comprises the output admittance y, and the
constant current generator y.:1Ve Which represents the influence of the input circuit to the output
circuit.

In equations 4.1.1 and 4.1.2 we have taken as independent variables the input voltage vi and
the output voltage v, by writing the input current j and the output current { using linear

relations allowed by the small a.c. signal approximation.
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Another transistor model can be found by taking as independent variables the input and
output currents. In this case the modelling parameters are “impedances”, defined by the

following relations:

DV . . .
Zq1 = —£ , Which represents the “input impedance”
Dle |pi. -0
DV . .
Z1p = —£ , Which represents the “reverse transfer impedance”
Dlc Dig=0
DV
Zy = —— ¢ , which represents the “forward transfer impedance”
Dle Di. =0
DV . :
Zyy = —C , which represents the “output impedance”
Dlc |pi, -0

The equivalent circuit using impedance parameters is shown in Fig.4.3.

Fig.4.3

As in the case of admittance parameters model, this four-terminal network which modelled the
CBC of bipolar transistor, has an input circuit made by the input impedance z,; and a
constant voltage generator z,i., and an output circuit made by the output impedance z,, and
a constant voltage generator ziie.

Then, the equations 4.1.3 and 4.1.4 will approximate the behaviour of the bipolar transistor:

DVe = Z11Dig + Z12Dig 4.1.3.

DV = Z21Dig + Z2oDig 4.1.4.
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Now, if we take as independent variables the input current and the output voltage, like in the
case of static characteristics, the variations of the input voltage and output current can be
written as follows:

DV = hyyblj + hyp D Vg 4.15.

Dig = hpyDIlj + hopo DV 4.1.6.

where parameters hi;, named hibrid parameters, are defined by following relations:

h, - DV,
1 DI. represents the “input impedance”. Usually is noted by h; .
IV, =ct.
h, - DV,
2~ DV represents the “reverse transfer factor”. Usually is noted by h, .
Oll=ct.
h, - DI,
2 DI. represents the “forward transfer factor”. Usually is noted by hy.
LV, =ct.
h, - DI,
1 DV represents the “output admittance”. Usually is noted by h, .
01l =ct.

All these factors have a second index to characterise the transistor’'s connection; the letter “e”
for CEC of the tansistor, “b” for CBC of the transistor, respectively “c” for CCC of the
transistor.

Equations 4.1.5 and 4.1.6 allow us to imagine a new four terminal network for the bipolar
transistor, which is most used in electronics. This circuit, named “hybrid para meters model of

the transistor” is shown in Fig.4.4
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AV, h.i,

K O o |
\

Fig.4.4

As you can see, this circuit is a mixture between “impedance parameters” and “admittance

parameters” circuits, for that reason being named “hybrid parameters model”.

Typical values for hybrid parameters.

Parameter e

1.1x10°w 10-100 w 20-50 x10°w
10" 10 1 or less

100 0.99 100
(medium) (medium) (medium)
10°w? 10" w? 10-10°w?

4.2 General Characteristics of an Amplifier.

Every amplifier is characterised by voltage amplification A, , current amplification A; ,

input impedance z; and output admittance Y, . In order to be able to calculate these

parameters it is necessary to transform the actual circuit in it's a.c. equivalent. Here are two
rules to be followed:

every capacitance is a short-circuit in a.c.

the d.c. biasing source is a short-circuit to the ground in a.c.
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Let's take the most usual amplifier circuit using transistors in practical applications, the
Common Emitter Connection amplifier, showed in Fig.4.5.

The equivalent a.c. circuit, taking
into account the above rules, is

shown Fig.4.6 . By dotted lines are

o represented in the circuit of Fig.4.5
InpuUt

the input signal source (v4 and Ry in

the output circuit the load resistor

T (R). Now, in fig.4.6 we must

Fig_4_=5 replace the transistor with its

equivalent hybrid circuit, in this particular case with the hybrid circuit for the CEC transistor. It
will result the final equivalent circuit, showed in fig.4.7.

The resistor Rs is the equivalent resistance of the voltage divider bias circuit (resistors Rg;

and Rg: in parallel connection).

By definition, the current gain A;

O-- : '
: is
”R\, R AI:I_L 4.2.1
o I
o For a simplified calculation, in
Fig.4.6 fig.4.7 we will take into account

the load resistor as the equivalent resistor R, =RcR_/(Rc+R\), thus the fig.4.7 becomes fig.4.8.

nput B = o output
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input B fs c output
o o 56—
——— DIFTEE
R, i=i, =
i R H RI=R.R/R:~R)
" hmVn-CD G) hfp".h h-rw
Vg.;"\
| "=
@ ' * <
E |-‘| : 4 lj E
z, Fig.4.8 z,
Then the current gain is:
i heip + DoV LRy
Aj=-=5=- feb".' %% = - Ny - hoe L.L:'hfe'hoeAiRLI
I I I
b b b 4.2.2.
oM
' 1+ hgR,
The input impedance is defined by
Vi
Zi=— 4.2.3.
|

i
then, from fig.4.8 we can calculate this impedance by applying the second Kirchhoff's law for
the input circuit:

V.

[ hielb + hreVo

. = hie + AR 4.2.4.
I Ib

Now, we can calculate easily the voltage gain, which is defined by:
A, =2 4.2.5.

then, in the same way used in last demonstrations, we will find:

AV :V—Oz ILRLI = Alﬂ
Vi iZ; Zi

4.2.6.

The last parameter which we must know is the output admittance (impedance). This is defined

by the next relation:
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i
_ (0]
Yo = v 427,
0 vg:O

This parameter is defined in condition of input signal source in shot-circuit (v=0). Then

_ hoeVo + hfeli —h. + hfeli
Yoe = - 'Toe 4.2.8.
g
But from input circuit applying second Kirchoff's Law we can write
S i hre
O:Rg|i+hi|i+hrvob _— = —
Vo vg=0 Rg + hie
and if we replace thisexpression in 4.2.8. we will find
- h hfehre
Yoe = Noe - = 4.2.9.
Rg + hie

4.3. The Simplified Hybrid Circuit for Bipolar Transistor.
For an CEC amplifier having an equivalent circuit as the one depicted in the figure below we

found earlier the following equations:

I h. Iy Current gain
—» - <—
ey
X (22

[ .
. O © ||

O O and input

impedance (4.2.4.)
Zi = hie + hreAiRll_
In the case where we have satisfied the condition h__R, < 10" (in particular that means a

maximum value for the load resistor of 10* ohms), the second term from the denominator of A;
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can be ignored and the current gain of the amplifier can be approximated by the hybrid factor
hte.

That means, from a practical standpoint of view, that in the hybrid model of the
transistor, we can neglect the output admittance h,. .

Now, if we take into account the actual typical values for the hybrid parameters in the
equation for the input impedance (h,.=10" ; A=h=10° ; R'=10"-10°; h,:=10%), we will see
that the second term in the expression of input impedance can have values in the range 10%-
10. In this case we can ignore this term versus the first term which has a value 10 to 100
times higher.

That means, from a practical standpoint of view, that in the hybrid model of the
transistor, we can neglect the reverse transfer factor h,e .

Taking into account these two approximations, the hybrid model of the transistor
becomes more simple, like the circuit shown in Fig.4.9.
hfeih In the case of the CEC amplifier, using the

hie
O—/——1 (L @ {0 simplified equivalent circuit in Fig.4.9, the general

B C

parameters of a common emitter amplifier are:

FIQEQ Ai=he ; Z=hie ; Yoe=0 ; Ai=heRi'/hie 4.3.1
The error in calculating these parameters, using the simplified hybrid model, is around 4%.

This error is less than the dispersion in the values of commonly used resistors, which makes it

acceptable.
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< A special case of common

O
R
e @ ; emitter  amplifier is  the
R i Ry R ” R i iRl common emitter amplifier with
Va ’\ ; emitter resistor. In this case the
o - 0o Ce capacitor doesn’t exist.
Fig.4.6 bis

Then the equivalent a.c. circuit
must take into account the

presence of this resistor and

x h, el -
oo (o ooy
. —> - .
I '" Figure 4.6 becomes 4.6bis.
+
Fig 4.7

R ' Ry Replacing the transistor now

with his simplified hybrid circuit

O --e we will obtain figure 4.7bis.
4.7 bis
The current gain remains the
same like for common emitter amplifier, but the input impedance and voltage gain will be
dramatically changed.
V; = hjg xiy + Rg x(iy +i.)=ip[hie + Re @+ h )] and using the definition formula for
input impedance we will obtain
zi = hie +Rg(1+ hg)
which has a higher value than the value of common emitter impedance.

Now, using the general formula for voltage gain we will obtain the new value of A..

A = hfeRL 5 - hfeRL 5 - RL
Y hie+RE(l+hfe) RE(1+ hfe) RE

As you can see the voltage gain, in this case, doesn’t depend on the transistor performances,

the amplifier having a stable voltage gain.
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The simplified circuit shown in Fig.4.9 can be used too, for computing the parameters of any

amplifier, independent of the type of the transistor connection. Let’s test that right now.

4.4. Common Base Amplifier.
In Fig.4.10 is depicted the Common Base

Amplifier with only one biasing source +Vcc . To

obtain the equivalent c.a. circuit we must follow

0
OUTDUT the same rules as in the general case.
Inpaut Output
Input c|:::u R ouU
v, Y
Re R. R,
VQ
Using these rules we will obtain the equivalent Fig.4.11

a.c. circuit shown in Fig.4.11. If we replace the transistor with its simplified circuit from Fig.4.9,
we will obtain the final equivalent circuit, shown in Fig. 4.12, from which we will be able to

compute the general characteristics of this amplifier.

el c Because ii=-le=-(Ih+i¢) the current gain
5 ()
. T NIA: will be:
? ItT hls . .
R ' A = |_|_: - e — Nielp _ hye
‘e B Do -de ip@rhg) 1+hg

T 4.4.1.
Fig.4.12

whose value is a little bit smaller than 1, which is in accordance with the definition of a factor.
The input impedance is:

5 = Vi hiely, N
I ii ib(1+ hfe) 1+ hfe

which has a value around 10 ohms, smaller than the input impedance of CEC amplifier.

4.4.2.
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The voltage gain is similar with A, of CEC amplifier, and output admittance is more close to

zero than in the case of CEC amplifier because ho,=10" w™, a value two orders of magnitude

lower than hoe.

+V._.
RC
RB]
| o Output
Input H o
Rio R,
F |ge.4. 13

4.5, Common Collector
Amplifier.

This amplifier is shown in
Fig.4.13. The differences between
this amplifier and CEC amplifier
are: the absence of a resistor in
the collector circuit and the output
point in the emitter of the
transistor. Now, by applying the
rules for a.c. equivalent circuit and

replacing the transistor

with its simplified hybrid

-— O
|
R g e
hfelb
[ —
Vg C R =

lIL circuit, we will find the
circuit drown in Fig.

4.14.

R.R/(R. 4R M this case the current

Fig.4.14

gain has next formula:

I
Aj====2=1+hg

i Ip

45.1.

The input impedance can be calculated from two standpoints of view, the input impedance of

transistor z;r and the input impedance of amplifier zia .
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i hialh + | R ,
Zip == % = hig + (1+ hgg ) xR"» hjg + L+ hg) xRe 4.5.2.
iT b
where we assumed that the load resistor is much higher than the Rg , therefore we

approximated R.' as Re .

R.z
— B TiT
z, = ——1— 45.3.

Rg +2;

The value given by the formula 4.5.3 is lower, in general, than the value given by formula 4.5.2.

This is the so called"problem of the biasing circuit" in the case of CCC amplifier.
The voltage gain of this amplifier is given by following formula:

Vo i, Rg _ [+ hge )Re
Vi ipqhie+ @+he )R] hig+ (1+he ) Re

As you can see, the voltage gain is almost equal with 1. This means that the amplitude of the

£1 45.4.

A, =

output signal is the same with the amplitude of the input signal. This is the reason for which

this amplifier is called "Emitter Follower".

The output admittance (impedance) can be calculated based on the following definition:

y — _0 |

0|vg=0 v, 4.5.5.
vg:O

but io = - ib 1+ hfe ), and in the particular condition vy=0 , we have the next relation

0= (Rg + hie)b + V, then results :

y | 1+ hfe
Olyv =0 = ' 4.5.6.
Vg Rg + hie
where Ry'=R4Rs/(Rg+Rg) . Then the output impedance is:
Zo| = Ry * e 45.7
(0] Vg=0 1+ hfe 0. 1.

The output impedance is very low as compared to the input impedance (four orders of
magnitude). For this reason CCC amplifier is used likeimpedance adapter.

The Problem of the Biasing Circuit for CCC Amplifier.
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We defined in last section the input impedance of Common Collector Amplifier as:

R.z
ZiA = R B ZiT = —
R B + ZiT
B N E As we said, the amplifier input impedance
. _O_I|:|r' I’ O_liL (see figure 4.15), is modified by the
9 » o
U R, LT Flake [ presence of biasing resistor Rg , as in the
\ ) ?|I_
? ': : C RR/(RAR) above formula. If the resistor Rs has a
b
ZE ZlJ = lower value than the input impedance of
- oT

Fig4.15 the transistor, the input amplifier

impedance can be dramatically changed as compared to the input transistor impedance
alone. To prevent this negative influence of the biasing circuit, we must modify it in such a way
as to provide the same d.c. biasing current, but have a higher a.c. impedance. The modified
circuit is shown in Fig 4.16.

The a.c. equivalent value of

3 +Ve.
resistor Rs is given by
RC
RB] Miller's theorem
. R,
R =
o—i Output T 1A

Input

For Common Collector
Amplifier an usual value for
the voltage gain is 0.999 ,

then the value of Rj'

becomes few orders of
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magnitude bigger than the value of input impedance of the transistor. In this case the input
impedance of the amplifier is determined mainly by the value of the transistor input
impedance. The equivalent a.c. circuit of amplifier shown in Fig.4.16 is presented in Fig.4.17
The current which flows through the resistor R; can be calculated using the following formula:

then, the resistor R;, connected between

V
Vigi' _Og
. Vi-Vo _ & Vig_ Vi Vi inputand the output of the amplifier, via
%" "R;  Rs Rz R,
3 Ce capacitor, is equivalent with a
1- Ay
schort-cut done by C. capacitor R'; resistor in series with Rg
J * y Q . . .
. pS V. equivalent resistor, which has an
V; © & ’
increased value only for a.c.
R, [ I
Re signals.
R,
o + . O
Fig.4.17

4.6. The DARLINGTON Pair.
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The Darlington pair is obtained by directly connecting two transistors as shown in Fig.4.18.

We will exemplify its use in aCCC amplifier.

Fig.4.18

From the a.c. equivalent circuit, using the simplified hybrid model we can calculate the

performances of this amplifier.

A=t=—2=AA » (1+hfe)2 4.6.1.
i i v
z,=h, +(1+hfe)z'» (1+hfe)2RE 4.6.2.
vV, V'v,
A, =—=— =A A, £1 4.6.3.
v, v, V' P
h. +R '
4 ie g
hie +ZI ¢ 1+hfe
z, = = 4.6.4.
1+hfe 1+hfe

The most important conclusions are: Darlington pair amplifier has higher current gain and
input impedance than the Common Collector Amplifier. The pair is sometimes called a
supertransistor whose current transfer factor he is the product of the individual current transfer

factors.

4.7. The CASCODE Amplifier.
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This amplifier is obtained by directly coupling two transistors, one in Common Emitter

Connection and the second in Common Base Connection as in Fig.4.19

-
D~ 1o
v, @ v ‘ V“'I
O "'J='—-i'- O
a) b
Fig.4.19
i 0
Ai:i_:i_i_': hfehfb » hfe 4.7.1.
z,»z,=h, 4.7.2.
vV, v,V s
hre =1l =_"l__y hrehrb » 10 4.7.3.
vV, V'v,

The equivalent a.c. circuit of the CASCODE amplifier draw in figure 4.19b is shown as a four

terminal network in the figure 4.19a.
The most important conclusion is: the reverse transfer factor is 4 orders of magnitude lower

than in the case of Common Emitter Amplifier or Common Base Amplifier. Then this amplifier

has the lowest reverse transfer factor.

4.8. The Differential Amplifier.

74



This amplifier is obtained by

connecting two transistors, with
very similar static

characteristics, as in the

Fig.4.20.
From second Kirchhoff's Law

we can write the next equation:

'Vr:c
Fig.4.20
If we have satisfied the condition

2Vee = Rl + VCEl + Relg

Reley << Rele

we can approximate the current which flows through resistor Re as an constant current. This

assertion is true too, for the dynamic component of this current. If this current is constant, we

can conclude that when its component Ig1/i.; increases, the component Ig./i., must decrease.
The relation between input and output signals must be linear in the case of small

signals. Therefore :

VOl = Allvil + A12vi2

V02 = A21Vi1 + A22Vi2 ,
but due to the symmetry of the circuit, A11»A2,»A; and A :»Ax1»A;.
Now, if we define the differential input signal as v,, = V,; - V,,, and the common input

Vil + Vi2

signal as Vi = 2

, by decomposing the input signals in the differential input signal

and the common input signal and replacing these new values in the definition of output

signals, we will obtain:
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Ai- A,
VOl = 1Tvid + (Al + AZ)ViC 4.8.1.

A, - A
Voo = %Vid + (AL + Ay Ve 4.8.2.

Now, we can define the differential output signal as :

Vod = Vo1- Vo2 = (Al - AZ)Vid 4.8.3.

and the common output signal as:

Vol + V02
Voc = 5 = (Al + A, )Vic 4.8.4.

T +Voe As you can see in fig.4.21, the

dynamic components of currents

+V ' ’ follow the rule of constant current
w

through the resistor Re , then if the

input signal in the base of T,

: R, . :
B increases (+) the T emitter current
Nk
V, will increase, too, and
'Vcc - consequently the emitter current of

Fig.4.21

T, will decrease. That drives an
increase of the output signal of T, . Like in a mirror, basically the same thing, will happen if the
input signal of T2 will increase.

Then we can conclude that the output of T, is in phase with the input of T, , and the
output of T; is in opposite phase with its input.

Let be now the input signals in opposite phase, having following values :

76



\' \'
V= —2 oty Vi = - —2 -
i1~ 2 and respectively Vi2 = 2 , then the relations 4.8.3 and 4.8.4 become
Vioa = Vo1~ Voo = (Al - AZ)Vid = Advg
vV, +V
Voc = = = =(A1+A2)Vic=0
2
That will drive the amplifier in pure
"differential” mode (no common-
mode input). The  dynamic
R
B components of emitter currents will
+Vg/2 be as shown in the figure 4.22.
B ¥ ¥ Then the total a.c. current that flows
i «— Mirror plane

through the resistor Re is zero. That
Frg.4.22
means the emitters have constant
potential, as being grounded, from the a.c. standpoint of view. Therefore, oth transistors
operate as a common emitter amplifier, the equivalent a.c. circuit being showed in fig.4.23.

From Fig.4.23 we can compute the gain for the differential amplifier, taking into

account that in fact we have two transistors:

I ; -h_R
h_ hrﬂlh I 2A — Vo - fe " L 4 8 5
B = Q 9 I i Vi RB + hie T
| Let's consider now a pure common
Rs b E¢ RL P
y mode input signal, with no differential
q

component. The input signals in phase

Fig 4.23 having next values:

Vi = V, andrespectively V,, =V, .Inthis case the 4.8.3 and 4.8.4 relations become:
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v, = ol 02 :(A1+A2)Vic:Ach
2

+iE1 +i92 As you can see, in this case the total

—t—
RB RB emitter current that flows through the
U RE resistor R is 2ie1 , then the dynamic

tv, +V,
= = ne components of the emitter currents
‘ Mirror plane  peing as in Fig.4.23.

Fig.4.24
Then the a.c. equivalent circuit will be

much like a "common emitter" amplifier with a resistor 2R connected in the emitter (see

Fig.4.25)

Then the A. gain (common mode gain) is:

A - Vo — B hfeR L
: Vi hie +RB + 2RE(l+hfe) 486
h.i . Asyou can see, the common mode gain is
h. teln i
B ic m C |
‘_ s . . - .
'—'_ \_/ lower than differential gain. In general is
R Iy R . . :
B E L desired to have this common mode gain as
iel 2R, _ . .
Vq lower as possible. The ratio Ay/A. is called
= v
) - ) Common Mode Rejection Ratio (CMRR
Fig.4.25 J (CMRR)

and serves as a figure of merit to measure how close is the actual amplifier to an ideal
differential amplifier, that is considered to have A.=0 and infinite CMRR. In view of further
increasing the CMRR, we can use constant current source, that has very high output
impedance in a.c. instead of the Rg resistor. A transistor in the common base configuration is

known to have the highest output impedance of all three possible configurations. Its input is
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shorted to ground in a.c. (the capacitor connected to its base), whereas its collector is
connected to the emitters of the transistors that form the differential amplifier, as in fig.4.26.

In this case the value of Rg resistor is

R, substituted by the output impedance of

common base amplifier, which is in the order

of megaohms. This will bring the common

Fig.4.26 mode gain close to zero. The potentiometer P
is used to set the desired d.c. emitter current of the differential amplifier, and bring the T, and

T, transistor in the optimal operating point.

Chapter 5. Power Amplifiers.
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Fig.5.1
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point close to the cut-off limit of the transistor (see Fig.5.1)

There are two main
types of  power
amplifiers: class A
power amplifiers that
have the operating
point at the middle of
the load line, and
class B power
amplifiers, which

have the operating

The first problem of these amplifiers is the signal distortions, or in terms of Fourier

spectrum, the problem of second harmonics generation. This problem originates from the fact

that these amplifiers work with large input signals, and in this case the hybrid parameters do

not remain constant. Therefore the output signal is not a linear function of the input signal, and

can be written as a power series:

Xo =G X, +G 2xi2 +... where X, is the output signal and x; is the input signal. All the

power stages discussed in this chapter are "current amplifiers” and therefore the output signal

is the collector current or the emitter current, which is about the same thing (Ic»lg) when the

base current can be neglected. Let be the input signal a periodic function: X, = X  coswt .

In this case, the dynamic component of the output current will be
i, =G,X_ coswt+G,X2cos®wt+...

1+cos 2wt

5.1.

But we can replace in this equation cos > wt = ————, which then it becomes:
2
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1+cos2wt
_—+

i =G X_coswt+G X
C m m 2

...=B,+B, coswt+B, cos2wt+... 52

where B; are constant coefficients. You can see now, from equation 5.2. that the output signal

has the second harmonics of the input signal, too. This handicap of such amplifiers becomes

important only for highpower amplifiers. In the case of low power amplifiers, such as the

Class A amplifiers, this disadvantage is not important since the ratio B2/B1<<1.

+VCC A class A amplifier is shown in Fig.5.2. Such

amplifier is a typical common emitter (or a common collector
Rea||

R,

circuit are much larger.

=R,

amplifier), with the difference that the load resistor R has
much lower impedance (a few ohms) than in a standard

C amplifier.  Accordingly, the currents flowing through the
E

Fig é The main drawback of the class A amplifier is that in order to

insure a maximal output voltage swing, the operating point has to be approximately the

midpoint of the load line (see fig.5.3). That means that the quiescence current k is

C A

the average DC power consumption of the amplifier:

approximately lo =
0.5*(V max-Vmin)/RL ,
which is half of the
maximum current. The
efficiency of the class A
amplifier, will be the ratio
between the maximum

signal output power and
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peak Ypeak
out y sout
hA - Pout — IRLl\j/ISVRIL\j/IS — \/5 '\/E
Poc  loVee loVee
- V..
bUI’ lpeak > IQ ) VCC = Vmax , and Vpeak = w )
therefore
V.-V

h, = 25 gy

max
Since Vnax>>Vmin , the efficiency is close to 25% only, that means that 75% of the power is
dissipated in form of heat on the circuit.

Class B power amplifier.
j +VCC The main problem of the class A amplifier is the large

R guiescence current. By biasing the transistor near cut-off, as

B2

0—| shown in fig 5.5, this current can be made almost null. This is

Vi the called a Class B operation. Such an amplifier with bipolar
R, R,

transistor in Common Collector Configuration is shown in fig.
Fig.5.4 5.4. However, when input is a sine waveform, only its positive
alternation will drive the transistor in the active region, whereas the negative alternation will

bring the transistor into even

deeper cut-off. As we will see

later on, this suppression of half

of the signal can be avoided by

pairing two complementary

transistors in such a way that
Fig.5.5 each one is active on an

opposite signal alternation. The efficiency of a Class B amplifier is:
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1|°“t Vout ilpeak Vpeak
. _&_ZRMSRMS_Z\/E_\/E
° Pc IangCC IangCC

The factor 1/2 from the nominator is due to the fact that the transistor is active for a single

alternation only. For a similar reason, the average DC supply current (see the diode rectifier,

l eak

— .
presented earlier in this book) is Iavg = . Also V. » V.., therefore the efficiency of
the Class B amplifier becomes:

1 Ipeak(vmax - Vmin)
hB:&ZZ 2 :BVCC'Vmin
PC Ipeakvmax 4 VCC
p

For circuits in which Vqin<<Vcc, the efficiency is close to 78%, which is a much better value
than the efficiency of Class A amplifiers.

However, a simple Class B amplifier that is active during one signal alternation only,
suppressing the other one, is of very little use, since it introduces a major distortion of the
original signal. In order to have the output active for both alternations while preserving the
Class B operating point, we can pair two transistors in such a way that they are active on

opposite alternations, in a so called “push-pull” configuration, shown in fig 5.6.

T, In this case the negative alternation is amplified

= by T: transistor, because it is a pnp transistor, and

the positive alternation is amplified by T,

- transistor because it is a npn transistor, and all the

voltages and current flows have opposite polarity.
T

: Fig.5.6 In all figures, the resistor R, designates the

load resistor that may be in the real world a speaker, for instance.
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Crossover distortion.

The simplified push-pull circuit in fig. 5.6 is missing the bias resistors in the bases of the

AN
"'\
G
=/
bt B
o
Qé Crossover
) natch

ARV
, Uﬂ

ias
g
/5‘%@
0%40

Srwar
o
) I
L

Fig.5.8

transistors (as are Rs: and Rs2
in fig 5.4), therefore with zero
input signal both transistors are
at cut-off. This is the part of the
desired Class B operating
regime, and would not hamper
too much amplifier's operation,
unless an arbitrarily small signal
would take the transistors out of
the cut-off region. However, in
the circuit in fig. 5.6, the signal
has to be larger than the
threshold voltage V.=V, of the
base-emitter junction, which is
typically 0.6 - 0.7 V for a silicon
bipolar transistor. The result is
a symmetrical distortion of the
input signal, as shown in fig.
5.7.
The transfer characteristic of

the second transistor T, is

plotted along the negative axis and reversed with respect to the characteristic of first

transistor T,. The input signal is composed of two opposite alternations, each one driving a
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different transistor. The distortion notch near the crossover point on the current axis, due to the
0.5-0.6 V voltage threshold required to bring the transistor into normal operation, is called
crossover distortion. And it is more important at low levels of the input signal.

This kind of distortion can be prevented by introducing a biasing voltage on the bases of the
transistors in such a way that cut-off is not completely reached at point Q, and the transfer
characteristics will look as in the Fig.5.8.

In this case the power amplifier works in class AB because at quiescence the operating

|-
il

Fig.5.10

Fig.5.9

point Q is a little bit shifted from the cut off region into the active region. The typical circuit
which avoids this distortion is shown in Fig.5.9. With the help of the potentiometer P it is
possible to adjust the required bias voltage and consequently the quiescence current. This
current is of the order of miliamperes, which is typically much smaller than the normal
operating current, of the order of amperes, therefore it will not affect significantly the efficiency
of the amplifier.

In practice, the current amplification factor of bipolar power transistors is much smaller than
for small-signal transistor. Therefore, the bias circuit must supply relatively important currents

to the transistor bases, and has to be implemented with relatively low values of the resistors,
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increasing the DC power consumption at quiescence and decreasing the amplifier efficiency.
One practical solution would be to use Darlington pairs instead of single power transistors.
However, while this solves the biasing problem, it doesn’t solve the problem of poorer linearity
of bipolar transistors with respect to other transistor types. Today, most of the highly linear
power amplifier are implemented using power MOSFETS, using a simplified circuit shown in
figure 5.10.

Class C power amplifier.

Further increase of the power amplifiers efficiency can be obtained by biasing a transistor
well below cutoff, so that it is active for only a small portion of the input signal (for instanc e for
the “tip” of the sine shown in fig. 5.5). These amplifiers have limited use, since they introduce
important distortions of the AC signal, and pairing (as for Class B amps) cannot solve this
problem. However, in radio-frequency (RF) power circuits, most of the loads are resonant
circuits, that are selective for a single frequency. If we restrict the operation of a Class C

amplifier to a frequency that matches the one of the resonant load circuit, we can use it in this

N +\écc high efficency (up to 90%) regime
<) T without distorting the output signal.
| - | « ) .
C. |___lLowpassfiter =~ Class D power amplifier.
V. o_l' H Pulse WidtH 0o
' Modulator 1 ¢—— 0B} | The ultimate solution for driving up
I L |
|
| . .
! D Lc||r! R, the efficiency would be to operate
|
: i the transistor at either full cutoff or
! |
o m oo L full saturation. Ideally, if the cutoff

current and the saturation voltage were both null, the efficiency would be 100%. In practice,
efficiencies in the 90% s are common. The transistor does not operate any more in a “linear”
mode, but switches continuously between saturation and cutoff. In the past, the power

transistors had poor switching characteristics, therefore class B push-pull amplifiers were the
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most efficient circuits available. The advances in the semiconductor technology made
possible fastswitching power transistors that can operate in the MHz range. However, in
most applications a continuous range of output voltages is desired, not just “all-or-none”. This
can be achieved in a Class D switching amplifier by modulating the duration of a high
frequency rectangular signal that drives the output transistors, then low-pass filtering (or
averaging) the high frequency output component of the signal using an LC filter, as shown in
fig. 5.11. The key to understanding the circuit operation is the Pulse Width Modulation (PWM)
process, depicted in fig 5.12. When the input is positive, the PWM circuit modifies the duty

cycle of the fixed frequency oscillator in such a way

that its positive alternation is wider than the negative

Vg one, and, after low-pass filtering (averaging), the net
PWM

output value will be positive. A similar encoding

scheme is applied for the negative signal alternation.

In summary, the signal encoding is changed from

Fig.5.12 amplitude modulation to the duty cycle f the high

frequency signal, by PWM, amplified, then reconstructed back through low-pass filtering.

Chapter 6. Negative feedback.
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Most devices used in signal

(:> q ( :> ; amplification generally do not
AD o

have the desired gain, or there is

X; a large dispersion in their
Feed-back

network parameters. In order to make an

Fig.6.1 amplifier circuit more stable with

the dispersion of individual components or enhance its parameters, a portion of the output
signal is fed back to its input. The principle of feedback amplifiers is shown in Fig.6.1. It
comprises five functionally distinct blocks. The letter G stands for the "Signal source"; the
letter C stands for the "Comparing circuit”; while the letter S stands for the "Sampling circuit".

The amplifier has the gain A, defined by the classical relation:

A =-— 6.1.
The feedback signal x: is first sampled from the output signal x. , then itis fed back through a

network that has the transfer function b:
x, = bx, 6.2.
The input signal results by substracting (or comparing) the source and feedback signals:

Xi = X_ =X 6.3
g f 3.
By definition the gain of feed-back amplifier is given by:
X X A

A=t =—o_=—¢ 6.4.
"ox, xtx, 1+ba,

Formula 6.4. represents the general formula for the gain of feedback amplifiers. The signal x
can be a current or a voltage signal.
Base on equation 6.4., we can define two kinds of feed-back:

positive feed-back when A;> A, or negative feed-back when A; < A,
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We will now focus our attention on the negative feedback. We can classify the feed-back
amplifiers based on the sampling and comparing circuits. If the output signal is a current, the
"sampling circuit" must be a series circuit, while if the output signal is a voltage signal the
"sampling circuit" must be a shunt circuit. In the case of "comparing circuit" we have the
reverse situation. If the input signal is a voltage signal the "comparing circuit" must be a
series circuit, while if the input signal is a current, the "comparing circuit" must be a shunt
circuit. These situations are shown in fig.2 for two ideal amplifiers. You can imagine the next
two possible situations, in which:
a. the input signal is a voltage and the output signal is a current (the case of ideal trans-
admittance amplifier i, =A v )or
b. the input signal is a current and the output signal is a voltage (the case of ideal trans-
resistance amplifier v, = A i;).

Of course, in reality such ideal situations do not exist. The current amplifier has an input
impedance different from zero and a finite output impedance, while the voltage amplifier has a
finite input impedance and an output impedance greater than zero. Based on the feedback

type, these impedances are modified, for the advantage of the feedback ampilifiers.
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; \deal Current Amplifier Advantages of Negative

g Feedback Amplifiers.
" g lb 1. Stability.
! o] =0 When applying strong

= | negative feedback we have

Series Sampling-Shunt Comparition DA >>1 Inthis case we can

Ideal Voltage Amplifier

] O neglect the term 1 to the
V,
Vg C I S denominator of equation 1.4.,
=00
|0 gy o d thus the gain b -
— and thus the gain becomes:
| V;=BV:
Shunl Sampling-Serkes Camparilin A F» i
Fig.B.2 b

6.5.
This formula proves that the negative feedback amplifiers have a constant amplification,

independent of the active device

A
Al (transistor, OPAMP, etc.).
Ax0.7 2. Expansion of bandwidth.
In Fig.6.3 is represented the
Afxﬂ? ) amplification as a function of the
) r\ ,, frequency of input signal for a
s h Fig.6.3 " f amplifier (A,) and for the same

amplifier with a negative feedback (Ar). As you can see the bandwidth is largest for the
negative feeback amplifier. We will mathematically demonstrate in the next paragraph that for
high cut-off frequency, this increase is:

f, =f(1+bA )

3. Noise reduction.

Every amplifier is characterised by a noise gain Ay . This gain decreases by applying

a negative feedback as in 6.4. formula.
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A

—_ N
1+DbA,
4. Total Harmonic Distortion (THD) reduction.

Nf

Every amplifier has a certain degree of non-linearity. Its output cannot be written any
more as a simple linear function of the input signal %=AoX% , but it can be written as a power
series. In terms of the power spectrum, this is reflected in the generation of harmonics when
the input signal is a pure sine signal having a fixed frequency. The cumulated amplitude of
these harmonics expressed as a percentage of the amplitude of the fundamental frequency is
called total harmonic distortion (THD). In most cases, the second harmonic is largest then the
sum of all others, and therefore finding its relative amplitude D, provides a fair estimation of
the overall THD rate. In transistor circuits the distortions arise form the fact that the signal
cannot be made arbitrarily small to make it verify the linearity hypothesis, therefore for real
signals the hybrid parameters cannot be considered constant any more. By applying a
negative feed-back, the second harmonic generation is reduced following the same equation

6.4.:

ig , iy 5. Input and output impedance changing.
@f' li' T]Ri Fig.6.4 represents a typical shunt (parallel)
|

comparing circuit for a real current amplifier. By

R C ]
. _V,
F'Q-6-4 definition, the input impedance is R, = |_ and the
i

— 0

current gain is A

The input impedance, in the case of negative feed-back becomes :

91



V. \2 R

R, = 1= i = i <R.i . .
f L +bi, 1+bA. , then Ri<R;in this case
Fig.6.5 represents a typical series comparing circuit for a real voltage amplifier. By
I—Q_ —_ Vi
Vi ﬂR @ definition the input impedance is R _i_ and the
1 i i
BFﬂ Vf
R =Y
it B voltage gain is A, =—
Fig.6.5

The new input impedance, for negative feed-back

amplifier becomes :

v v. +bv
—_ g — i 0
R =3 =7

=R i(l +bA v) , then Ris>R; in this case. You can try to demonstrate

what happens with output impedance (see fig.6.2 and take into account that you have a real

amplifier).

Positive Feed-back.
As we have seen, the gain of amplifier with feed-back, is given by the equation 6.4 :

A

T 1+ba,
From this formula one can see that the gain goes towards infinity (and so does the amplitude

f

of the output signal) if the denominator vanishes to zero. In this situation, even in the absence
of an input signal, any noise or fluctuation at the input leads in the generation of a large output
signal, which is further fed back to the input, being perpetually regenerated. The device is
called "oscillator" or signal source generator. The condition:

ba =-1 6.6.
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is named "Barkhausen's criterion”. One has to note that in general both the transfer function b
and the openloop amplification factor A, are complex (in order to accurately describe both
amplitude and phase properties), therefore the Barkhausen criterion can be written as two
different criterions for the real and imaginary part.

The LC oscillator.
—O—+ 5__0— The voltage gain of the voltage amplifier depicted in
rl:l
|

Fig.6.6, having the load impedancez, is :

A = Vo — z,i _ kz,
V + 6-7-
VI VI ZL r'o
where z, is :
_ 4 (Z 1 tz 3)
Z, = n " 6.8.
Z1 ZZ 23
The feedback signal is the input signal:
v,=v, =bv,_
From this relation results the feedback factor:
4
b=—— 6.9.

z, %z,
Now, in relation 6.6. we can substitute A, as given by equation 6.7. and b as given by

equation 6.6. Under these conditions, the Barkhausen criterion becomes:

kz.z

1= 1£2
! ro(zl+zz+23)+zz(zl+23) 6.10.

Now, if all z impedances are reactances (z=jX;), the formula 6.10 can be a real number only if

X, +X,+X,=0 6.11.
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The relation 6.11 is the "oscillator condition” for LC oscillators. From equations 6.10 and

6.11, we can obtain the second condition for LC oscillators:

k=—- 6.12.

From equation 6.11 results that if X; and X, are inductances, X; must be a capacitance.

This is the so called Hartley oscillator. Conversely, if X; and X, are capacitances, X; must be
an inductance. This is the so called Colpitts oscillator. In next figures are presented the two
main types of LC oscillators. The operating frequencies are deduced from equation 1.6. Then,

for the Hartley oscillator we have:

I
(L1+L2)C

. . .1 , _
jLw+jL,w- JW_O P w* = 6.13.

?El
o
—|
?57
i, iLao o 1/ch|:,m
I T +— | |
[
|| —
Ko jLo
Hartley oscillator Collpitz ascillator
and for Colpitts oscillator we have:
1 1
jw- j—-j—=0b W =——— 6.14
cCw C,w ecc, 0 -
172 .
C,*¥C., @
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The usual range of operating frequencies for the Hartley oscillator is 100kHz — 10MHz, and for

Colpitts oscillator is 1MHz — 100MHz. For lower frequencies, RC oscillators are used, while

for higher frequencies oscillators with Leher line (distributed LC constants oscillators) or wave

guide oscillators are used. For very high frequencies, special electronic devices such as

tunnelling diodes, Impatt diodes, clystrons and magnetrons (up to 1Ghz) are used.

RC oscillators.

The positive feedback in these oscillators is performed by the "Wien network”, as in fig.6.7. ,

where;

R, 1iC»

| _ 1 1 1 .
Ve Zl_Rl+. and - +JC2W
— jc.,w z, R,

oy 2
(1 o \% z
2 A, v=—°>—z =bv, P b=—H=2
— + 7z z +7z
Zl 2 1 2
O O
= Then:
Fig.6.7
1
b= ~ 6.15.
R, ,C, & 6
1+ —+—+|cR,C W- =
R, C, 8 CR,Wg@

Now, if we want to have the Barkhausen criterion satisfied, the feedback factor must be a real

number, therefore the parenthesis in the denominator of 6.15 formula must be null. Based on

that condition, we can calculate the frequency of the RC oscillator as:

. 1

W s —
RlRZClCZ

6.16.

If we have R;=R, and C,=C, , the gain of amplifier must be A,=3, according to equation 6.15.
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Chapter 7. The Bipolar Transistor Behaviour at High Freguency

Signals.

In the case of high frequency signal, applied to the input of a bipolar transistor, the output
signal will depend on the junctions’ capacitance, that cannot be neglected as we did for the
low frequency signal analysis. Then for high frequencies signals the hybrid model of the
transistor must be replaced by other model that take into account the junctions’ capacitance.

The “P” Hybrid Model. (Giacoletto Model)

rh’c
Foa ' |
B o—ljw B I I oC
—— C&
rh’e —_— Ce gmvh'e I'CE
Eo o E
Fig.7.1

In Fig.7.1 is shown the model proposed by Giacoletto for the bipolar transistor

operating with high frequency input signals. The point B’ represents the so called “virtual
base” which represents a point inside the semiconductor which forms the base of transistor.
Between this point B’) and the pinch of the base (B point) exists the so called “distributed
resistance” of the transistor base (rov'). This “distributed resistance” takes into account the
real resistance of the thin longitudinal section of the semiconductor which forms the base of
transistor. In this case, the input signal applied to the base B is not the real input signal, due to
the voltage drop that occurs on resistor rp, . The real input signal will be the voltage signal

which goes up the virtual base B’, therefore the forward transfer factor g, (the transfer-
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conductance) is multiplied with the voltage between virtual base B’ and the emitter of
transistor E, aiming at providing a model for the “constant current generator” of the
collector (gmVe).

The input impedance of the transistor is modelled by resistor ry. , while the diffusion
capacitance of the emitter junction is modelled by capacitor C. connected in parallel with the
Iy'e resistor.

The “Early effect”, or base width modulation effect, is modelled by the resistor ry. ,
while the barrier capacitance of the collector is modelled by the C. capacitor connected in
parallel with the resistor ryc . Finally, the output impedance is modelled by the rc. resistor.

The common values for all these model components are:
oy =100 ohms ; rye =1 Kohms ; roc =4 Mohms ; rce = 80 Kohms
Ce =100 pF; C.=5pF; gm =50 mAN

The main advantage of this high-frequency model is that it allows to compute
all these parameters using the well-known hybrid parameters of the transistor (h;e,
hre , hte, hoe) .

The transfer -conductance g, .

The most important factor of the “P ” Hybrid Model is the transfer - conductance gm .

The definition relation of g, is as follows:

g = ﬂIC - -a ﬂIE :aﬂIE h took int ttht' » - al
m '"Vb‘e '"Vb'e ﬂVE,W ere we 100K INto accoun atIC E.

g a

But , from the P-N junction we know that Ve = ré ,then Idm = a =~ .Because the
Mg TVE

le

emitter junction behaves like a forward biased P-N junction, then we can use the relation for
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Ve

the ideal diode Ig » const. eVT . Therefore the derivative of E versus Ve is going to be:

1E » E and the expression of g, becomes :
7Y i '

|
9m=aﬂ|E »aIE =|C|
Ve V; Vi

7.1.

As you can see, the equation 7.1. is the first one connecting the main transfer factor in the

transistor model to temperature (Vr = kT/e).

The connection between the Giacoletto Model and the Hybrid Model.

i h, dy
/ g In fig.7.2 we present both models
\
l’ V. hVe h"‘CD h V. \'l (hybrid and P hybrid) of transistor. In
\\O O,/ order to draw a correspondence

between them, we must consider

1 oG only the case of low frequency input

:T: M signals, because the hybrid model is

Eo

«E valid only for low frequencies.
Fig7 ?
In this case, we can neglect all capacitors in P hybrid model and the current that flows

through resistor ryc .
Then, according to hybrid parameters definition, we can write following relations for the

input circuits of these models:

[
i R_=0 =OmVp'e = Omiplpe , but f = hte, then we have following relation
RL =0

between trans-conductance of P hybrid model and forward transfer factor (h¢) of the hybrid
model:
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hfe = Onlbe 7.2.

The Gain Current at High Frequency.

In the case of high frequency input signal and low load resistor (R.<rce), we can neglect

a number of elements of the Giacoletto model, as you can see from the figure 7.3.

R » I
B FW Bl | > | Ic C iL

o—[—— 1} ; O

ih C v

—— € v

rhl‘ =71 ce gmvb'a <$) rce R'—

Eo o
Fig.7.3 E

The currents that can be neglected are represented by doted lines. Also, the devices

ic C IL

F. '

bb B
Bo—[1

L. '

b Ce c . Clln

2 av(}) =" R
Eo : o
Fig.7.4 E

through which such currents flow can be neglected, too. In this situation we have following

elements:

rp'c >> rce >> R

wCe

Using Miller's theorem, we can replace the C. capacitor as you can see in figure 7.4.
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1
1 wCe 1

wCc  1- Ay wCc(Ll+gmRL

were ) , because

A, =LRL _- 9mVbeRL _ _gmR
V' vpe Vb'e meL

. . ZAy
and C".=Cc , because z"= Ay - 1 » Z|Av>>1

Then the current gain is:

[ ImVp' Im! b
Ai:_L:- m be:- m b'e 7.3.
I Vipe 1+ WCir e
Zj

where Cj =Cg + C'c = Cq +C¢(1+ gmRy )

but, A; = - hfef , the we can define
1+ Jf_
2
= - 7.4,
2prb'e[ce + Cc(l"' ngL)]
A

as the high frequency for which the real current gain decreases to ‘A«E‘ = NeE

We can also define the cut off frequency (foff), as the frequency for which the real gain

becomes equal to one,

hse hfefﬂ/z hfef\/f

|Ai|f:f =1= = » 7.5.
off £2 \/fz 452 fofe
1+;_ff JE off
iz
from 7.4. and 7.5. relations we can obtain
hy NteOpe

f f = hf f = = : = ; 76
° ez 2prb’e(ce +Cc) 2p(Ce +Cc)
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Relation 7.6. connect the cut off frequency to main parameters that define the Giacoletto
model (g, Ce, Co).
If we take the load resistor as being null, R=0, the capacitance C’. becomes C, , then the

relation 7.6 becomes, if we neglect C. versus Ce (Cc<<Ce):

hteOy
off = —1e“be 7.7.
2pCe
A
frequencies 1 : frequencies :
el 3dB :
<117 ] S . proo |
 flogll Hog(l, /1N |
frs f f
Fig.7.5 8 et

Equation 7.6. can be used in order to determine experimentally the value of C. , the most
important capacitance of P hybrid model.
Now, if we define the current gain using the attenuation of the signal, that means to use

the decibels way of expressing it:

h hef hre f
G; = 20log/A|| = 20 Iogﬁ » 20Iog% =20 |ogeTJE =20 Iog(hfefﬁ) - 20logf
e
1+ fe
2
foff

you can see that Gi(f) is a linear function of the frequency f. Therefore this function can be

represented as in figure 7.5.
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Chapter 8. Multivibrators

8.1. The Astable (free-running) Multivibrator.
The astable or free-running multivibrator

is presented in Fig.8.1. In fact this circuit

is realised by two simply common

emitter amplifiers (both with fixed

biasing circuits) coupled between them

by two capacitors C: and C. The

Fig.8.1

biasing circuit (Rg; and R, resistors)
has such a value that the transistor works in saturation region of output current (see fig.8.2
where are represented the possible working points).
The signals generated by such circuit are shown in Fig.8.3. As you can see, if one transistor
is on, the second transistor is off. The transistor is switched on when his base voltage
becomes a little bit positive (npn transistor). That is possible because the capacitor

connected in his base will discharge via v

el

Ve p--r——
£ A Lt L g
= | Transistor on :
E . /: . ; : V::?“ ! !
5 - i : : : J; +Vlf: T I -------E-
ANt g
C]1 < N . - — >
2 // SO SO N S ; ; <
N « IR | Transistor off Cd_s X / g
TTTTTTTTRY RV y. echaself g
1 2 3 4 5 B v:'.iL[\/) Vuv : .
Fig. 8.2 ; ’ >
the transistor which is in conduction (on). :
C.distharge
/0 S R A
Ve ¥
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If we start from the initial conditions as in Fig.8.1 (T: on and T: off) at time b , the collector
voltage of T, is very close to zero (Vcesa), Whereas the collector voltage of T, is V.. , this
transistor being turned off. The base voltage of T, is a little positive, this transistor being
turned on, and the base voltage of T> being -Vcc (transistor turned off) as in fig.8.3. Because
the transistor T; is on, the capacitor C; can not remain charged, then it will discharge through
Re: resistor and collector-emitter circuit of Ti. At the time t; the base voltage of T, becomes a
little bit positive (the G capacitor will try to recharge to maximum potential which exist in
system) and in this moment T, is switched on. Following that, the polarity of C, capacitor
plates will change because the drop voltage can not change instantly on a capacitor3, then the
base voltage of T, transistor become -Vcc and this transistor will be switched off. From this
moment (t;) becomes the discharge of G capacitor trough Rs; resistor and the collector-
emitter circuit of T , as in the first case, fll the moment ., when the system come back to the
state of t, moment.

8.2. The Monostable Multivibrator.

+Vcc As you can see in fig.8.4, the
C

R..

VCEQ. L

biasing circuit for T1 is a typical
circuit via Rg; resistor. The

biasing circuit for T. transistor

T1(CII'I) is connected in the collector of

T: (the Rs: resistor). Then, if

transistor T; is “on”, that means

in conduction, the biasing voltage in the base of T: is too low and this transistor is “off”, that

means no conduction for this one and the voltage on Hs collector is just +V¢c . This state

*Vep =+40- (+ Vcc) =-Vcc - (+Veezsat) » - Vee
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represents the stable state of this circuit and for that this circuit is called “monostable circuit”.
Now, if we apply a positive pulse (trigger pulse) on his base we will force this transistor to
enter in conduction regime, that means a change in the polarity of the plates of C, capacitor,
because the voltage across a capacitor can not change suddenly

(Ug, =Va - Vp = +0- Ve =- Ve - 0=- V). Then, after applying the trigger pulse,

transistor T, will be turned off, because the A plate of C, capacitor will change his potential
from +0 Volts to —Vcc Volts. Because under these circumstances T» remain in conduction

state, the capacitor C, will discharge via the emitter of T, to the ground. Then T, will remain in

+V; cut off state untill the C, capacitor discharging
O
is complete.
R'(21 RCZ p
Ve, “Vee
8.3. The Bistable Multivibrator.
T.{on .
{0 )_ t;'ﬁ'ﬂz—r To(off) In Figure 85 is shown the Bistable
: A Pilse .
Fig.8.5 Multivibrator, or the Flip-Flop. The name of this

circuit means that both on/off states of the transistor are stable states. Then, in order to bring
transistors to their complementary states, we must trigger the transition of the circuit from an

V.. A external signal. If,
C2

such as in Fig.8.5,

» the T: transistor is in

—T=t +t,—

v

Vc1 : — the “on” state, then
the T, transistor is in

; ; >
V. [ 2T, — > : “off"  state, the

trig g
—‘ _‘ —‘ switching to the
: >

f, t t T complementary
Fig.8.6

state (T, off and T, on), can be triggered by a positive pulse applied to the base of T,. In this
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case, the polarity of both capacitor plates connected to the transistor bases, will be reversed,
because the drop voltage on a capacitor can not change instantly. The new state will be T, off
and T, on, which is a stable state too. In the aim to come back to the initial state, T, onand T,
off, we must applied a second trigger pulse, now in the base of T: transistor. The shape of
collector signals looks like in Fig.8.6. However, there’s no need to apply two different pulses
to trigger the switching. Indeed, if we connect the two trigger inputs together, the positive
pulse applied to the base of the transistor which is already in the “on” state will have no effect,
whereas the pulse delivered to the base of the transistor that's in the “off” state will actually
trigger state switching.

As you can see in Fig.8.6, we need two trigger pulses to come back to the initial state.

That means that the bistable circuit is a divider with 2 of the original trigger frequency.

Chapter 9. The Operational Amplifier.
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Historically speaking, the name Operational Amplifier comes from their use in early analogic
computers, for performing different mathematical operations. In general an Operational
Amplifier (OPAMP) is a high gain (Ay~10°) differential voltage amplifier, with relatively high
input impedance (Z~10°%. Following these characteristics, one can quickly extract the
following rules for the normal operation of the OPAMP:
A. Due to the high input impedance, the current through the inputs in negligible and can
be considered 0 in most applications.
B. The voltage between the differential inputs is very close to zero. This is a result of the
fact that if the output is not at saturation, its normal voltage range is of the order of volts
or tens of volts. Since A,~10™, the input differential voltage is vi=v,/A, ~ 10 V, in the

sub-mV range.

The OPAMPS are never operated in open loop

— configuration, and in order to stabilise their behaviour, a
OPAMP. —{
+

° negative feed-back is applied in various configurations, the

Fig. 9.1 simplest being shown in fig. 9.1, in which there’s a “total

feedback” applied from the output to the inverting input.

Following rule B, the voltage between the inputs (of which one is now shunted to the output) is

null, therefore: v,=vi. Since the voltage output closely follows the input voltage, this

configuration is called “voltage follower”. However, this stage differs from a simple shunt,
which provides the same unitary voltage gain, in that that the input impedance is very high.

Zf If one desires a voltage gain greater than one, it has

to apply a less stronger negative feedback. This can

o be achieved by dividing the output voltage using a
V

(o]

i resistive divider before applying the negative

feedback, as shown in fig. 9.2. The feedback
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voltage at the output of the divider is V, % which, following rule B is practically the input
f i

voltage. From here, the voltage gain can be calculated as:

z
AV:1+?f

i

Since this configuration preserves the polarity of the DC input signals or the phase of the AC
input signals, it is called “noninverting amplifier”.

In some applications, one may want not only to amplify the signal, but also to change its
polarity or phase. This is achieved by the configuration shown in fig. 9.3, named “inverting
amplifier”. The negative feedback propagates through the Z: impedance from output to input. It
results in an equivalent input impedance at the inverting input which will be shown to vanish to
zero. By means of the Miller theorem, the feedback impedance impedance is equivalent to
two impedances connected in parallel with the input circuit, respectively with the output circuit,

as shown in fig. 9.4. The values of these impedances as given by Miller's theorem are:

Since Ay is very high, the input impedance Z vanishes to zero and acts like a “virtual short-
circuit” or shunt to the ground. This could have also been quickly inferred using rule B.

However, this virtual shunt differs from a real one in that that the current through it is null, given
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the rule A, therefore all the current flow is directed through the feedback impedance 4. The
equivalent circuit of Fig. 9.3 results in being as simple as shown in Fig. 9.5

Based on this transformation, the voltage gain of the

|—i> Z Z _i,

inverting amplifier can be calculated as :

virval
shori-ciuul v - iZf B Zf

Fig. 9.5

Accordingly, the input impedance is simply going to be
the impedance inserted in series with the input. This is going to be much less than the input
impedance of the OPAMP itself, or the input impedance of the voltage follower or the inverting
amplifier. Moreover, if the signal source does not have a negligible internal (or output)
impedance, its impedance will add to the input impedance of the inverting amplifier. This will
result in a change in the voltage gain, which for the other amplifier configurations is fairly

constant  with respect to the signal

R
— source impedance.
R S

Vie [ _ ! Basic Circuits using OPAMPS.
V, o] OPAMP 5
Vs o] ot Vo 9.1. Summation Circuit.
V4D—|:|71 As mentioned earlier, one of the first

" Fig. 9.6

uses of OPAMPS was in performing
mathematical operations. Summation is the most basic one, and the circuit that performs this
operation is based on the inverting amplifier configuration, as shown in fig. 6.

The input currents sum at the virtual ground point following one of the Kirchhoff's current laws.

.V \' \' \'
|:_1+_2+_3+_4+
R R R R

but since this current flows entirely through the feedback resistor Ry (following rule A), we have:

VO = 'in
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then
Rs
Vo= (Vi+Vvy+vg+vy+...)

equation that shows that the output voltage is proportional with the summation of input
voltages.

A substracting circuit can be built in two stages, first by inverting the voltage to be substracted
using an inverting amplifier having unity gain (R=R;), then adding this “negated” voltage to the
second one by using the summation circuit discussed above.

9.2. Integration Circuit.

The impedances used in the basic

inverting and noninverting applications

can be purely capacitive or inductive, not

only resistive. In this case the OPAMP

can perform complex mathematical

Fig. 9.7

functions such as integration and

differentiation. If in the inverting configuration we use as feedback impedance a capacitor, the

voltage across it will be the integral of the current that charges it:
1.
Vo = - —¢g(t)dt
Cf

0}

But the charging current is actually the input current, i(t) = V'?
therefore
1
v, =-— ¢y (Ddt,
° CR (o0

equation that shows that the output voltage is proportional to the integral of input voltage.

9.3. Differentiation Circuit
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Conversely, if the input impedance is a

capacitor, the current that passes

through it is going to be:

but v, = - R¢i and therefore

v,=-rc M,
dt

equation that shows that the output

voltage is proportional to the derivative of

the input voltage.

9.4. Ideal Rectifier

Voltage rectification is  primarily

performed using rectifier diodes.
However, the diodes present the flaw of a nonzero rectifying voltage threshold (or forward
voltage). Signals smaller than the forward voltage simply cannot be rectified. Since we have
seen that the OPAMP in appropriate configurations can do a number of magic things such as
creating virtual shunts with no current through them or changing circuit impedances, it's worth
checking if itcan do something about creating a “virtual diode” with a null threshold voltage
(ideal rectifier). Let’s take a look at the schematics outlined in figure 9.9.

The situations in which the input voltage is positive or negative will have to be dealt with
separately, since the conduction states of the of the diodes D, and D; will be different, and
therefore the input current will branch in a different way. In this inverting configuration, for an
arbitrarily small negative input, the very high voltage gain will drive the output of the OPAMP
positive enough to bring the diode Dy into conduction, above its threshold. Conversely, the

diode Dr will be reverse biased, and therefore there’s going to be no current flow through it.
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All the current { is going to flow from the output of the OPAMP through the diode Df and the
feedback resistor Rf, with a direction opposite to the conventional one depicted in fig. 9.9.

Since the inverting input is a virtual ground point, the voltage at the output is going to be:

Vo =-iR;,0r vy =-v, % that is inversely proportional to the negative input voltage.

For a positive input voltage, the OPAMP output is going to be driven negative, in which case
the diode Dx is going to be reverse polarized, acting as a circuit breaker, letting the output
voltage v being driven to the ground through the load resistor or through the feedback
resistor. All the input current will flow through the diode D., which is forward polarized to the
output of the OPAMP. The output voltage of the rectifier stage will be null. This dual behavior

is approaching the ideal rectifier characteristics.

Finish: Congratulations for those who got to finish this course!

The authors.
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